Files
llvm/mlir/lib/IR/OperationSupport.cpp
River Riddle 9ed22ae5b8 Refactor the various operand/result/type iterators to use indexed_accessor_range.
This has several benefits:
* The implementation is much cleaner and more efficient.
* The ranges now have support for many useful operations: operator[], slice, drop_front, size, etc.
* Value ranges can now directly query a range for their types via 'getTypes()': e.g:
   void foo(Operation::operand_range operands) {
     auto operandTypes = operands.getTypes();
   }

PiperOrigin-RevId: 284834912
2019-12-10 13:21:22 -08:00

194 lines
7.5 KiB
C++

//===- OperationSupport.cpp -----------------------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file contains out-of-line implementations of the support types that
// Operation and related classes build on top of.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// OperationState
//===----------------------------------------------------------------------===//
OperationState::OperationState(Location location, StringRef name)
: location(location), name(name, location->getContext()) {}
OperationState::OperationState(Location location, OperationName name)
: location(location), name(name) {}
OperationState::OperationState(Location location, StringRef name,
ValueRange operands, ArrayRef<Type> types,
ArrayRef<NamedAttribute> attributes,
ArrayRef<Block *> successors,
MutableArrayRef<std::unique_ptr<Region>> regions,
bool resizableOperandList)
: location(location), name(name, location->getContext()),
operands(operands.begin(), operands.end()),
types(types.begin(), types.end()),
attributes(attributes.begin(), attributes.end()),
successors(successors.begin(), successors.end()) {
for (std::unique_ptr<Region> &r : regions)
this->regions.push_back(std::move(r));
}
void OperationState::addOperands(ValueRange newOperands) {
assert(successors.empty() && "Non successor operands should be added first.");
operands.append(newOperands.begin(), newOperands.end());
}
void OperationState::addSuccessor(Block *successor, ValueRange succOperands) {
successors.push_back(successor);
// Insert a sentinel operand to mark a barrier between successor operands.
operands.push_back(nullptr);
operands.append(succOperands.begin(), succOperands.end());
}
Region *OperationState::addRegion() {
regions.emplace_back(new Region);
return regions.back().get();
}
void OperationState::addRegion(std::unique_ptr<Region> &&region) {
regions.push_back(std::move(region));
}
//===----------------------------------------------------------------------===//
// OperandStorage
//===----------------------------------------------------------------------===//
/// Replace the operands contained in the storage with the ones provided in
/// 'operands'.
void detail::OperandStorage::setOperands(Operation *owner,
ValueRange operands) {
// If the number of operands is less than or equal to the current amount, we
// can just update in place.
if (operands.size() <= numOperands) {
auto opOperands = getOperands();
// If the number of new operands is less than the current count, then remove
// any extra operands.
for (unsigned i = operands.size(); i != numOperands; ++i)
opOperands[i].~OpOperand();
// Set the operands in place.
numOperands = operands.size();
for (unsigned i = 0; i != numOperands; ++i)
opOperands[i].set(operands[i]);
return;
}
// Otherwise, we need to be resizable.
assert(resizable && "Only resizable operations may add operands");
// Grow the capacity if necessary.
auto &resizeUtil = getResizableStorage();
if (resizeUtil.capacity < operands.size())
grow(resizeUtil, operands.size());
// Set the operands.
OpOperand *opBegin = getRawOperands();
for (unsigned i = 0; i != numOperands; ++i)
opBegin[i].set(operands[i]);
for (unsigned e = operands.size(); numOperands != e; ++numOperands)
new (&opBegin[numOperands]) OpOperand(owner, operands[numOperands]);
}
/// Erase an operand held by the storage.
void detail::OperandStorage::eraseOperand(unsigned index) {
assert(index < size());
auto operands = getOperands();
--numOperands;
// Shift all operands down by 1 if the operand to remove is not at the end.
auto indexIt = std::next(operands.begin(), index);
if (index != numOperands)
std::rotate(indexIt, std::next(indexIt), operands.end());
operands[numOperands].~OpOperand();
}
/// Grow the internal operand storage.
void detail::OperandStorage::grow(ResizableStorage &resizeUtil,
size_t minSize) {
// Allocate a new storage array.
resizeUtil.capacity =
std::max(size_t(llvm::NextPowerOf2(resizeUtil.capacity + 2)), minSize);
OpOperand *newStorage = static_cast<OpOperand *>(
llvm::safe_malloc(resizeUtil.capacity * sizeof(OpOperand)));
// Move the current operands to the new storage.
auto operands = getOperands();
std::uninitialized_copy(std::make_move_iterator(operands.begin()),
std::make_move_iterator(operands.end()), newStorage);
// Destroy the original operands and update the resizable storage pointer.
for (auto &operand : operands)
operand.~OpOperand();
resizeUtil.setDynamicStorage(newStorage);
}
//===----------------------------------------------------------------------===//
// Operation Value-Iterators
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// OperandRange
OperandRange::OperandRange(Operation *op)
: OperandRange(op->getOpOperands().data(), op->getNumOperands()) {}
//===----------------------------------------------------------------------===//
// ResultRange
ResultRange::ResultRange(Operation *op)
: ResultRange(op->getOpResults().data(), op->getNumResults()) {}
//===----------------------------------------------------------------------===//
// ValueRange
ValueRange::ValueRange(ArrayRef<Value *> values)
: ValueRange(values.data(), values.size()) {}
ValueRange::ValueRange(OperandRange values)
: ValueRange(values.begin().getBase(), values.size()) {}
ValueRange::ValueRange(ResultRange values)
: ValueRange(values.begin().getBase(), values.size()) {}
/// See `detail::indexed_accessor_range_base` for details.
ValueRange::OwnerT ValueRange::offset_base(const OwnerT &owner,
ptrdiff_t index) {
if (OpOperand *operand = owner.dyn_cast<OpOperand *>())
return operand + index;
if (OpResult *result = owner.dyn_cast<OpResult *>())
return result + index;
return owner.get<Value *const *>() + index;
}
/// See `detail::indexed_accessor_range_base` for details.
Value *ValueRange::dereference_iterator(const OwnerT &owner, ptrdiff_t index) {
// Operands access the held value via 'get'.
if (OpOperand *operand = owner.dyn_cast<OpOperand *>())
return operand[index].get();
// An OpResult is a value, so we can return it directly.
if (OpResult *result = owner.dyn_cast<OpResult *>())
return &result[index];
// Otherwise, this is a raw value array so just index directly.
return owner.get<Value *const *>()[index];
}