mirror of
https://github.com/intel/llvm.git
synced 2026-01-26 21:53:12 +08:00
When lowering to the standard dialect, we currently support only the extent tensor variant of the shape.rank operation. This change lets the conversion pattern fail in a well-defined manner. Differential Revision: https://reviews.llvm.org/D84852
289 lines
9.2 KiB
C++
289 lines
9.2 KiB
C++
//===- ShapeToStandard.cpp - conversion from Shape to Standard dialect ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/ShapeToStandard/ShapeToStandard.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::shape;
|
|
|
|
/// Conversion patterns.
|
|
namespace {
|
|
class AnyOpConversion : public OpConversionPattern<AnyOp> {
|
|
public:
|
|
using OpConversionPattern<AnyOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AnyOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
AnyOpConversion::matchAndRewrite(AnyOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
AnyOp::Adaptor transformed(operands);
|
|
|
|
// Replace `any` with its first operand.
|
|
// Any operand would be a valid substitution.
|
|
rewriter.replaceOp(op, {transformed.inputs().front()});
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
template <typename SrcOpTy, typename DstOpTy>
|
|
class BinaryOpConversion : public OpConversionPattern<SrcOpTy> {
|
|
public:
|
|
using OpConversionPattern<SrcOpTy>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(SrcOpTy op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
typename SrcOpTy::Adaptor transformed(operands);
|
|
|
|
// For now, only error-free types are supported by this lowering.
|
|
if (op.getType().template isa<SizeType>())
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<DstOpTy>(op, transformed.lhs(),
|
|
transformed.rhs());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConstSizeOpConversion : public OpConversionPattern<ConstSizeOp> {
|
|
public:
|
|
using OpConversionPattern<ConstSizeOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ConstSizeOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
rewriter.replaceOpWithNewOp<ConstantIndexOp>(op, op.value().getSExtValue());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ShapeOfOpConversion : public OpConversionPattern<ShapeOfOp> {
|
|
public:
|
|
using OpConversionPattern<ShapeOfOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult ShapeOfOpConversion::matchAndRewrite(
|
|
ShapeOfOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
|
|
// For now, only error-free types are supported by this lowering.
|
|
if (op.getType().isa<ShapeType>())
|
|
return failure();
|
|
|
|
// For unranked tensors `shape_of` lowers to `scf` and the pattern can be
|
|
// found in the corresponding pass.
|
|
ShapeOfOp::Adaptor transformed(operands);
|
|
Value tensorVal = transformed.arg();
|
|
Type tensorTy = tensorVal.getType();
|
|
if (tensorTy.isa<UnrankedTensorType>())
|
|
return failure();
|
|
|
|
// Build values for individual dimensions.
|
|
SmallVector<Value, 8> dimValues;
|
|
RankedTensorType rankedTensorTy = tensorTy.cast<RankedTensorType>();
|
|
int64_t rank = rankedTensorTy.getRank();
|
|
auto loc = op.getLoc();
|
|
for (int64_t i = 0; i < rank; i++) {
|
|
if (rankedTensorTy.isDynamicDim(i)) {
|
|
Value dimVal = rewriter.create<DimOp>(loc, tensorVal, i);
|
|
dimValues.push_back(dimVal);
|
|
} else {
|
|
int64_t dim = rankedTensorTy.getDimSize(i);
|
|
Value dimVal = rewriter.create<ConstantIndexOp>(loc, dim);
|
|
dimValues.push_back(dimVal);
|
|
}
|
|
}
|
|
|
|
// Materialize extent tensor.
|
|
Value staticExtentTensor =
|
|
rewriter.create<TensorFromElementsOp>(loc, dimValues);
|
|
rewriter.replaceOpWithNewOp<TensorCastOp>(op, staticExtentTensor,
|
|
op.getType());
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class ConstShapeOpConverter : public OpConversionPattern<ConstShapeOp> {
|
|
public:
|
|
using OpConversionPattern<ConstShapeOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ConstShapeOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult ConstShapeOpConverter::matchAndRewrite(
|
|
ConstShapeOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
|
|
// For now, this lowering supports only extent tensors, not `shape.shape`
|
|
// types.
|
|
if (op.getType().isa<ShapeType>())
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
SmallVector<Value, 4> extentOperands;
|
|
for (auto extent : op.shape()) {
|
|
extentOperands.push_back(
|
|
rewriter.create<ConstantIndexOp>(loc, extent.getLimitedValue()));
|
|
}
|
|
Value tensor = rewriter.create<TensorFromElementsOp>(loc, extentOperands);
|
|
Type indexTy = rewriter.getIndexType();
|
|
Type resultTy = RankedTensorType::get({ShapedType::kDynamicSize}, indexTy);
|
|
rewriter.replaceOpWithNewOp<TensorCastOp>(op, tensor, resultTy);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class ToExtentTensorOpConversion
|
|
: public OpConversionPattern<ToExtentTensorOp> {
|
|
public:
|
|
using OpConversionPattern<ToExtentTensorOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(ToExtentTensorOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
ToExtentTensorOpAdaptor adaptor(operands);
|
|
|
|
if (!adaptor.input().getType().isa<RankedTensorType>())
|
|
return rewriter.notifyMatchFailure(op, "input needs to be a tensor");
|
|
|
|
rewriter.replaceOpWithNewOp<TensorCastOp>(op, adaptor.input(),
|
|
op.getType());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class GetExtentOpConverter : public OpConversionPattern<GetExtentOp> {
|
|
using OpConversionPattern<GetExtentOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(GetExtentOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult GetExtentOpConverter::matchAndRewrite(
|
|
GetExtentOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
GetExtentOp::Adaptor transformed(operands);
|
|
|
|
// For now, only error-free types are supported by this lowering.
|
|
if (op.getType().isa<SizeType>())
|
|
return failure();
|
|
|
|
// Derive shape extent directly from shape origin if possible. This
|
|
// circumvents the necessity to materialize the shape in memory.
|
|
if (auto shapeOfOp = op.shape().getDefiningOp<ShapeOfOp>()) {
|
|
if (shapeOfOp.arg().getType().isa<ShapedType>()) {
|
|
rewriter.replaceOpWithNewOp<DimOp>(op, shapeOfOp.arg(),
|
|
transformed.dim());
|
|
return success();
|
|
}
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<ExtractElementOp>(op, rewriter.getIndexType(),
|
|
transformed.shape(),
|
|
ValueRange{transformed.dim()});
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class RankOpConverter : public OpConversionPattern<shape::RankOp> {
|
|
public:
|
|
using OpConversionPattern<shape::RankOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
RankOpConverter::matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
// For now, this lowering supports only error-free types.
|
|
if (op.getType().isa<SizeType>())
|
|
return failure();
|
|
|
|
shape::RankOp::Adaptor transformed(operands);
|
|
rewriter.replaceOpWithNewOp<DimOp>(op, transformed.shape(), 0);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Conversion pass.
|
|
class ConvertShapeToStandardPass
|
|
: public ConvertShapeToStandardBase<ConvertShapeToStandardPass> {
|
|
|
|
void runOnOperation() override;
|
|
};
|
|
} // namespace
|
|
|
|
void ConvertShapeToStandardPass::runOnOperation() {
|
|
// Setup target legality.
|
|
MLIRContext &ctx = getContext();
|
|
ConversionTarget target(ctx);
|
|
target.addLegalDialect<StandardOpsDialect>();
|
|
target.addLegalOp<FuncOp, ModuleOp, ModuleTerminatorOp>();
|
|
|
|
// Setup conversion patterns.
|
|
OwningRewritePatternList patterns;
|
|
populateShapeToStandardConversionPatterns(patterns, &ctx);
|
|
|
|
// Apply conversion.
|
|
auto module = getOperation();
|
|
if (failed(applyPartialConversion(module, target, patterns)))
|
|
signalPassFailure();
|
|
}
|
|
|
|
void mlir::populateShapeToStandardConversionPatterns(
|
|
OwningRewritePatternList &patterns, MLIRContext *ctx) {
|
|
// clang-format off
|
|
patterns.insert<
|
|
AnyOpConversion,
|
|
BinaryOpConversion<AddOp, AddIOp>,
|
|
ConstShapeOpConverter,
|
|
BinaryOpConversion<MulOp, MulIOp>,
|
|
ConstSizeOpConversion,
|
|
GetExtentOpConverter,
|
|
RankOpConverter,
|
|
ShapeOfOpConversion,
|
|
ToExtentTensorOpConversion>(ctx);
|
|
// clang-format on
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::createConvertShapeToStandardPass() {
|
|
return std::make_unique<ConvertShapeToStandardPass>();
|
|
}
|