Files
llvm/clang/lib/CodeGen
Hans Wennborg a926d84c4b Emit used/dllexport inline method definitions in nested classes (PR19743, PR11170)
The previous code that was supposed to handle this didn't work
since parsing of inline method definitions is delayed to the end
of the outer class definition. Thus, when HandleTagDeclDefinition()
got called for the inner class, the inline functions in that class
had not been parsed yet.

Richard suggested that the way to do this is by handling inline
method definitions through a new ASTConsumer callback.

I really wanted to call ASTContext::DeclMustBeEmitted() instead of
checking for attributes, but doing that causes us to compute linkage,
and then we fail with "error: unsupported: typedef changes linkage
of anonymous type, but linkage was already computed" on tests like
this: (from SemaCXX/undefined-internal.cpp) :-/

  namespace test7 {
    typedef struct {
      void bar();
      void foo() { bar(); }
    } A;
  }

Differential Revision: http://reviews.llvm.org/D3809

llvm-svn: 209549
2014-05-23 20:37:38 +00:00
..
2014-05-09 00:26:20 +00:00

IRgen optimization opportunities.

//===---------------------------------------------------------------------===//

The common pattern of
--
short x; // or char, etc
(x == 10)
--
generates an zext/sext of x which can easily be avoided.

//===---------------------------------------------------------------------===//

Bitfields accesses can be shifted to simplify masking and sign
extension. For example, if the bitfield width is 8 and it is
appropriately aligned then is is a lot shorter to just load the char
directly.

//===---------------------------------------------------------------------===//

It may be worth avoiding creation of alloca's for formal arguments
for the common situation where the argument is never written to or has
its address taken. The idea would be to begin generating code by using
the argument directly and if its address is taken or it is stored to
then generate the alloca and patch up the existing code.

In theory, the same optimization could be a win for block local
variables as long as the declaration dominates all statements in the
block.

NOTE: The main case we care about this for is for -O0 -g compile time
performance, and in that scenario we will need to emit the alloca
anyway currently to emit proper debug info. So this is blocked by
being able to emit debug information which refers to an LLVM
temporary, not an alloca.

//===---------------------------------------------------------------------===//

We should try and avoid generating basic blocks which only contain
jumps. At -O0, this penalizes us all the way from IRgen (malloc &
instruction overhead), all the way down through code generation and
assembly time.

On 176.gcc:expr.ll, it looks like over 12% of basic blocks are just
direct branches!

//===---------------------------------------------------------------------===//