mirror of
https://github.com/intel/llvm.git
synced 2026-01-27 06:06:34 +08:00
HLFIR requires mapping symbol to a single mlir::Value (produced by a fir::FortranVariableOpInterface), while the current lowering maps the value to a fir::ExtdendedValue. So far, the HLFIR symbol query was a special one. Hence, all the code directly using symMap.lookupSymbol and symMap.addSymbol did not work with the lowering to HLFIR. Refactor the code so that symbol lookup and add symbol go through the converter in a centralize place that handles the HLFIR case (translate fir::FortranVariableOpInterface to fir::ExtdendedValue in lookups, and generate hlfir.declare when adding symbols). In the refactoring, fir::FortranVariableOpInterface is added as a symbolBox variant to avoid special casing all lookups (shallowLookup...). Remove some unused SymbolBox member function instead of updating them. Differential Revision: https://reviews.llvm.org/D143395
1525 lines
68 KiB
C++
1525 lines
68 KiB
C++
//===-- ConvertCall.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/ConvertCall.h"
|
|
#include "flang/Lower/ConvertExprToHLFIR.h"
|
|
#include "flang/Lower/ConvertVariable.h"
|
|
#include "flang/Lower/CustomIntrinsicCall.h"
|
|
#include "flang/Lower/StatementContext.h"
|
|
#include "flang/Lower/SymbolMap.h"
|
|
#include "flang/Optimizer/Builder/BoxValue.h"
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/IntrinsicCall.h"
|
|
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
|
|
#include "flang/Optimizer/Builder/MutableBox.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Derived.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
|
|
#include "flang/Optimizer/HLFIR/HLFIROps.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "flang-lower-expr"
|
|
|
|
/// Helper to package a Value and its properties into an ExtendedValue.
|
|
static fir::ExtendedValue toExtendedValue(mlir::Location loc, mlir::Value base,
|
|
llvm::ArrayRef<mlir::Value> extents,
|
|
llvm::ArrayRef<mlir::Value> lengths) {
|
|
mlir::Type type = base.getType();
|
|
if (type.isa<fir::BaseBoxType>())
|
|
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
|
|
type = fir::unwrapRefType(type);
|
|
if (type.isa<fir::BaseBoxType>())
|
|
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
|
|
if (auto seqTy = type.dyn_cast<fir::SequenceType>()) {
|
|
if (seqTy.getDimension() != extents.size())
|
|
fir::emitFatalError(loc, "incorrect number of extents for array");
|
|
if (seqTy.getEleTy().isa<fir::CharacterType>()) {
|
|
if (lengths.empty())
|
|
fir::emitFatalError(loc, "missing length for character");
|
|
assert(lengths.size() == 1);
|
|
return fir::CharArrayBoxValue(base, lengths[0], extents);
|
|
}
|
|
return fir::ArrayBoxValue(base, extents);
|
|
}
|
|
if (type.isa<fir::CharacterType>()) {
|
|
if (lengths.empty())
|
|
fir::emitFatalError(loc, "missing length for character");
|
|
assert(lengths.size() == 1);
|
|
return fir::CharBoxValue(base, lengths[0]);
|
|
}
|
|
return base;
|
|
}
|
|
|
|
/// Lower a type(C_PTR/C_FUNPTR) argument with VALUE attribute into a
|
|
/// reference. A C pointer can correspond to a Fortran dummy argument of type
|
|
/// C_PTR with the VALUE attribute. (see 18.3.6 note 3).
|
|
static mlir::Value
|
|
genRecordCPtrValueArg(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Value rec, mlir::Type ty) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
mlir::Value cAddr = fir::factory::genCPtrOrCFunptrAddr(builder, loc, rec, ty);
|
|
mlir::Value cVal = builder.create<fir::LoadOp>(loc, cAddr);
|
|
return builder.createConvert(loc, cAddr.getType(), cVal);
|
|
}
|
|
|
|
// Find the argument that corresponds to the host associations.
|
|
// Verify some assumptions about how the signature was built here.
|
|
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::func::FuncOp fn) {
|
|
// Scan the argument list from last to first as the host associations are
|
|
// appended for now.
|
|
for (unsigned i = fn.getNumArguments(); i > 0; --i)
|
|
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
|
|
// Host assoc tuple must be last argument (for now).
|
|
assert(i == fn.getNumArguments() && "tuple must be last");
|
|
return i - 1;
|
|
}
|
|
llvm_unreachable("anyFuncArgsHaveAttr failed");
|
|
}
|
|
|
|
mlir::Value
|
|
Fortran::lower::argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Value arg) {
|
|
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
|
|
auto &builder = converter.getFirOpBuilder();
|
|
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
|
|
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
|
|
return converter.hostAssocTupleValue();
|
|
}
|
|
return {};
|
|
}
|
|
|
|
fir::ExtendedValue Fortran::lower::genCallOpAndResult(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
|
|
std::optional<mlir::Type> resultType) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
// Handle cases where caller must allocate the result or a fir.box for it.
|
|
bool mustPopSymMap = false;
|
|
if (caller.mustMapInterfaceSymbols()) {
|
|
symMap.pushScope();
|
|
mustPopSymMap = true;
|
|
Fortran::lower::mapCallInterfaceSymbols(converter, caller, symMap);
|
|
}
|
|
// If this is an indirect call, retrieve the function address. Also retrieve
|
|
// the result length if this is a character function (note that this length
|
|
// will be used only if there is no explicit length in the local interface).
|
|
mlir::Value funcPointer;
|
|
mlir::Value charFuncPointerLength;
|
|
if (const Fortran::semantics::Symbol *sym =
|
|
caller.getIfIndirectCallSymbol()) {
|
|
funcPointer = fir::getBase(converter.getSymbolExtendedValue(*sym, &symMap));
|
|
if (!funcPointer)
|
|
fir::emitFatalError(loc, "failed to find indirect call symbol address");
|
|
if (fir::isCharacterProcedureTuple(funcPointer.getType(),
|
|
/*acceptRawFunc=*/false))
|
|
std::tie(funcPointer, charFuncPointerLength) =
|
|
fir::factory::extractCharacterProcedureTuple(builder, loc,
|
|
funcPointer);
|
|
}
|
|
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
|
|
mlir::Value convertExpr = builder.createConvert(
|
|
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
|
|
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
|
|
};
|
|
llvm::SmallVector<mlir::Value> resultLengths;
|
|
auto allocatedResult = [&]() -> std::optional<fir::ExtendedValue> {
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
llvm::SmallVector<mlir::Value> lengths;
|
|
if (!caller.callerAllocateResult())
|
|
return {};
|
|
mlir::Type type = caller.getResultStorageType();
|
|
if (type.isa<fir::SequenceType>())
|
|
caller.walkResultExtents([&](const Fortran::lower::SomeExpr &e) {
|
|
extents.emplace_back(lowerSpecExpr(e));
|
|
});
|
|
caller.walkResultLengths([&](const Fortran::lower::SomeExpr &e) {
|
|
lengths.emplace_back(lowerSpecExpr(e));
|
|
});
|
|
|
|
// Result length parameters should not be provided to box storage
|
|
// allocation and save_results, but they are still useful information to
|
|
// keep in the ExtendedValue if non-deferred.
|
|
if (!type.isa<fir::BoxType>()) {
|
|
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
|
|
// Calling an assumed length function. This is only possible if this
|
|
// is a call to a character dummy procedure.
|
|
if (!charFuncPointerLength)
|
|
fir::emitFatalError(loc, "failed to retrieve character function "
|
|
"length while calling it");
|
|
lengths.push_back(charFuncPointerLength);
|
|
}
|
|
resultLengths = lengths;
|
|
}
|
|
|
|
if (!extents.empty() || !lengths.empty()) {
|
|
auto *bldr = &converter.getFirOpBuilder();
|
|
auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
|
|
auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
|
|
mlir::Value sp = bldr->create<fir::CallOp>(
|
|
loc, stackSaveFn.getFunctionType().getResults(),
|
|
stackSaveSymbol, mlir::ValueRange{})
|
|
.getResult(0);
|
|
stmtCtx.attachCleanup([bldr, loc, sp]() {
|
|
auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
|
|
auto stackRestoreSymbol =
|
|
bldr->getSymbolRefAttr(stackRestoreFn.getName());
|
|
bldr->create<fir::CallOp>(loc,
|
|
stackRestoreFn.getFunctionType().getResults(),
|
|
stackRestoreSymbol, mlir::ValueRange{sp});
|
|
});
|
|
}
|
|
mlir::Value temp =
|
|
builder.createTemporary(loc, type, ".result", extents, resultLengths);
|
|
return toExtendedValue(loc, temp, extents, lengths);
|
|
}();
|
|
|
|
if (mustPopSymMap)
|
|
symMap.popScope();
|
|
|
|
// Place allocated result or prepare the fir.save_result arguments.
|
|
mlir::Value arrayResultShape;
|
|
if (allocatedResult) {
|
|
if (std::optional<Fortran::lower::CallInterface<
|
|
Fortran::lower::CallerInterface>::PassedEntity>
|
|
resultArg = caller.getPassedResult()) {
|
|
if (resultArg->passBy == PassBy::AddressAndLength)
|
|
caller.placeAddressAndLengthInput(*resultArg,
|
|
fir::getBase(*allocatedResult),
|
|
fir::getLen(*allocatedResult));
|
|
else if (resultArg->passBy == PassBy::BaseAddress)
|
|
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
|
|
else
|
|
fir::emitFatalError(
|
|
loc, "only expect character scalar result to be passed by ref");
|
|
} else {
|
|
assert(caller.mustSaveResult());
|
|
arrayResultShape = allocatedResult->match(
|
|
[&](const fir::CharArrayBoxValue &) {
|
|
return builder.createShape(loc, *allocatedResult);
|
|
},
|
|
[&](const fir::ArrayBoxValue &) {
|
|
return builder.createShape(loc, *allocatedResult);
|
|
},
|
|
[&](const auto &) { return mlir::Value{}; });
|
|
}
|
|
}
|
|
|
|
// In older Fortran, procedure argument types are inferred. This may lead
|
|
// different view of what the function signature is in different locations.
|
|
// Casts are inserted as needed below to accommodate this.
|
|
|
|
// The mlir::func::FuncOp type prevails, unless it has a different number of
|
|
// arguments which can happen in legal program if it was passed as a dummy
|
|
// procedure argument earlier with no further type information.
|
|
mlir::SymbolRefAttr funcSymbolAttr;
|
|
bool addHostAssociations = false;
|
|
if (!funcPointer) {
|
|
mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
|
|
mlir::SymbolRefAttr symbolAttr =
|
|
builder.getSymbolRefAttr(caller.getMangledName());
|
|
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
|
|
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
|
|
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
|
|
fir::getHostAssocAttrName())) {
|
|
// The number of arguments is off by one, and we're lowering a function
|
|
// with host associations. Modify call to include host associations
|
|
// argument by appending the value at the end of the operands.
|
|
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
|
|
converter.hostAssocTupleValue().getType());
|
|
addHostAssociations = true;
|
|
}
|
|
if (!addHostAssociations &&
|
|
(callSiteType.getNumResults() != funcOpType.getNumResults() ||
|
|
callSiteType.getNumInputs() != funcOpType.getNumInputs())) {
|
|
// Deal with argument number mismatch by making a function pointer so
|
|
// that function type cast can be inserted. Do not emit a warning here
|
|
// because this can happen in legal program if the function is not
|
|
// defined here and it was first passed as an argument without any more
|
|
// information.
|
|
funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
|
|
} else if (callSiteType.getResults() != funcOpType.getResults()) {
|
|
// Implicit interface result type mismatch are not standard Fortran, but
|
|
// some compilers are not complaining about it. The front end is not
|
|
// protecting lowering from this currently. Support this with a
|
|
// discouraging warning.
|
|
LLVM_DEBUG(mlir::emitWarning(
|
|
loc, "a return type mismatch is not standard compliant and may "
|
|
"lead to undefined behavior."));
|
|
// Cast the actual function to the current caller implicit type because
|
|
// that is the behavior we would get if we could not see the definition.
|
|
funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
|
|
} else {
|
|
funcSymbolAttr = symbolAttr;
|
|
}
|
|
}
|
|
|
|
mlir::FunctionType funcType =
|
|
funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
// First operand of indirect call is the function pointer. Cast it to
|
|
// required function type for the call to handle procedures that have a
|
|
// compatible interface in Fortran, but that have different signatures in
|
|
// FIR.
|
|
if (funcPointer) {
|
|
operands.push_back(
|
|
funcPointer.getType().isa<fir::BoxProcType>()
|
|
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
|
|
: builder.createConvert(loc, funcType, funcPointer));
|
|
}
|
|
|
|
// Deal with potential mismatches in arguments types. Passing an array to a
|
|
// scalar argument should for instance be tolerated here.
|
|
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
|
|
for (auto [fst, snd] : llvm::zip(caller.getInputs(), funcType.getInputs())) {
|
|
// When passing arguments to a procedure that can be called by implicit
|
|
// interface, allow any character actual arguments to be passed to dummy
|
|
// arguments of any type and vice versa.
|
|
mlir::Value cast;
|
|
auto *context = builder.getContext();
|
|
if (snd.isa<fir::BoxProcType>() &&
|
|
fst.getType().isa<mlir::FunctionType>()) {
|
|
auto funcTy =
|
|
mlir::FunctionType::get(context, std::nullopt, std::nullopt);
|
|
auto boxProcTy = builder.getBoxProcType(funcTy);
|
|
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
|
|
cast = builder.create<fir::EmboxProcOp>(
|
|
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
|
|
} else {
|
|
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
|
|
}
|
|
} else {
|
|
mlir::Type fromTy = fir::unwrapRefType(fst.getType());
|
|
if (fir::isa_builtin_cptr_type(fromTy) &&
|
|
Fortran::lower::isCPtrArgByValueType(snd)) {
|
|
cast = genRecordCPtrValueArg(converter, fst, fromTy);
|
|
} else if (fir::isa_derived(snd)) {
|
|
// FIXME: This seems like a serious bug elsewhere in lowering. Paper
|
|
// over the problem for now.
|
|
TODO(loc, "derived type argument passed by value");
|
|
} else {
|
|
cast = builder.convertWithSemantics(loc, snd, fst,
|
|
callingImplicitInterface);
|
|
}
|
|
}
|
|
operands.push_back(cast);
|
|
}
|
|
|
|
// Add host associations as necessary.
|
|
if (addHostAssociations)
|
|
operands.push_back(converter.hostAssocTupleValue());
|
|
|
|
mlir::Value callResult;
|
|
unsigned callNumResults;
|
|
if (caller.requireDispatchCall()) {
|
|
// Procedure call requiring a dynamic dispatch. Call is created with
|
|
// fir.dispatch.
|
|
|
|
// Get the raw procedure name. The procedure name is not mangled in the
|
|
// binding table.
|
|
const auto &ultimateSymbol =
|
|
caller.getCallDescription().proc().GetSymbol()->GetUltimate();
|
|
auto procName = toStringRef(ultimateSymbol.name());
|
|
|
|
fir::DispatchOp dispatch;
|
|
if (std::optional<unsigned> passArg = caller.getPassArgIndex()) {
|
|
// PASS, PASS(arg-name)
|
|
dispatch = builder.create<fir::DispatchOp>(
|
|
loc, funcType.getResults(), builder.getStringAttr(procName),
|
|
operands[*passArg], operands, builder.getI32IntegerAttr(*passArg));
|
|
} else {
|
|
// NOPASS
|
|
const Fortran::evaluate::Component *component =
|
|
caller.getCallDescription().proc().GetComponent();
|
|
assert(component && "expect component for type-bound procedure call.");
|
|
fir::ExtendedValue pass = converter.getSymbolExtendedValue(
|
|
component->GetFirstSymbol(), &symMap);
|
|
mlir::Value passObject = fir::getBase(pass);
|
|
if (fir::isa_ref_type(passObject.getType()))
|
|
passObject = builder.create<fir::ConvertOp>(
|
|
loc, passObject.getType().dyn_cast<fir::ReferenceType>().getEleTy(),
|
|
passObject);
|
|
dispatch = builder.create<fir::DispatchOp>(
|
|
loc, funcType.getResults(), builder.getStringAttr(procName),
|
|
passObject, operands, nullptr);
|
|
}
|
|
callResult = dispatch.getResult(0);
|
|
callNumResults = dispatch.getNumResults();
|
|
} else {
|
|
// Standard procedure call with fir.call.
|
|
auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
|
|
funcSymbolAttr, operands);
|
|
callResult = call.getResult(0);
|
|
callNumResults = call.getNumResults();
|
|
}
|
|
|
|
if (caller.mustSaveResult()) {
|
|
assert(allocatedResult.has_value());
|
|
builder.create<fir::SaveResultOp>(loc, callResult,
|
|
fir::getBase(*allocatedResult),
|
|
arrayResultShape, resultLengths);
|
|
}
|
|
|
|
if (allocatedResult) {
|
|
// 7.5.6.3 point 5. Derived-type finalization for nonpointer function.
|
|
// Check if the derived-type is finalizable if it is a monorphic
|
|
// derived-type.
|
|
// For polymorphic and unlimited polymorphic enities call the runtime
|
|
// in any cases.
|
|
std::optional<Fortran::evaluate::DynamicType> retTy =
|
|
caller.getCallDescription().proc().GetType();
|
|
if (!fir::isPointerType(funcType.getResults()[0]) && retTy &&
|
|
(retTy->category() == Fortran::common::TypeCategory::Derived ||
|
|
retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())) {
|
|
if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic()) {
|
|
auto *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
|
|
fir::runtime::genDerivedTypeDestroy(*bldr, loc,
|
|
fir::getBase(*allocatedResult));
|
|
});
|
|
} else {
|
|
const Fortran::semantics::DerivedTypeSpec &typeSpec =
|
|
retTy->GetDerivedTypeSpec();
|
|
if (Fortran::semantics::IsFinalizable(typeSpec)) {
|
|
auto *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
|
|
mlir::Value box = bldr->createBox(loc, *allocatedResult);
|
|
fir::runtime::genDerivedTypeDestroy(*bldr, loc, box);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
allocatedResult->match(
|
|
[&](const fir::MutableBoxValue &box) {
|
|
if (box.isAllocatable()) {
|
|
// 9.7.3.2 point 4. Finalize allocatables.
|
|
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
|
|
stmtCtx.attachCleanup([bldr, loc, box]() {
|
|
fir::factory::genFinalization(*bldr, loc, box);
|
|
});
|
|
}
|
|
},
|
|
[](const auto &) {});
|
|
return *allocatedResult;
|
|
}
|
|
|
|
if (!resultType)
|
|
return mlir::Value{}; // subroutine call
|
|
// For now, Fortran return values are implemented with a single MLIR
|
|
// function return value.
|
|
assert(callNumResults == 1 && "Expected exactly one result in FUNCTION call");
|
|
(void)callNumResults;
|
|
|
|
// Call a BIND(C) function that return a char.
|
|
if (caller.characterize().IsBindC() &&
|
|
funcType.getResults()[0].isa<fir::CharacterType>()) {
|
|
fir::CharacterType charTy =
|
|
funcType.getResults()[0].dyn_cast<fir::CharacterType>();
|
|
mlir::Value len = builder.createIntegerConstant(
|
|
loc, builder.getCharacterLengthType(), charTy.getLen());
|
|
return fir::CharBoxValue{callResult, len};
|
|
}
|
|
|
|
return callResult;
|
|
}
|
|
|
|
static hlfir::EntityWithAttributes genStmtFunctionRef(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::evaluate::ProcedureRef &procRef) {
|
|
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
|
|
assert(symbol && "expected symbol in ProcedureRef of statement functions");
|
|
const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
|
|
// Statement functions have their own scope, we just need to associate
|
|
// the dummy symbols to argument expressions. There are no
|
|
// optional/alternate return arguments. Statement functions cannot be
|
|
// recursive (directly or indirectly) so it is safe to add dummy symbols to
|
|
// the local map here.
|
|
symMap.pushScope();
|
|
llvm::SmallVector<hlfir::AssociateOp> exprAssociations;
|
|
for (auto [arg, bind] : llvm::zip(details.dummyArgs(), procRef.arguments())) {
|
|
assert(arg && "alternate return in statement function");
|
|
assert(bind && "optional argument in statement function");
|
|
const auto *expr = bind->UnwrapExpr();
|
|
// TODO: assumed type in statement function, that surprisingly seems
|
|
// allowed, probably because nobody thought of restricting this usage.
|
|
// gfortran/ifort compiles this.
|
|
assert(expr && "assumed type used as statement function argument");
|
|
// As per Fortran 2018 C1580, statement function arguments can only be
|
|
// scalars.
|
|
// The only care is to use the dummy character explicit length if any
|
|
// instead of the actual argument length (that can be bigger).
|
|
hlfir::EntityWithAttributes loweredArg = Fortran::lower::convertExprToHLFIR(
|
|
loc, converter, *expr, symMap, stmtCtx);
|
|
fir::FortranVariableOpInterface variableIface = loweredArg.getIfVariable();
|
|
if (!variableIface) {
|
|
// So far only FortranVariableOpInterface can be mapped to symbols.
|
|
// Create an hlfir.associate to create a variable from a potential
|
|
// value argument.
|
|
mlir::Type argType = converter.genType(*arg);
|
|
auto associate = hlfir::genAssociateExpr(
|
|
loc, builder, loweredArg, argType, toStringRef(arg->name()));
|
|
exprAssociations.push_back(associate);
|
|
variableIface = associate;
|
|
}
|
|
const Fortran::semantics::DeclTypeSpec *type = arg->GetType();
|
|
if (type &&
|
|
type->category() == Fortran::semantics::DeclTypeSpec::Character) {
|
|
// Instantiate character as if it was a normal dummy argument so that the
|
|
// statement function dummy character length is applied and dealt with
|
|
// correctly.
|
|
symMap.addSymbol(*arg, variableIface.getBase());
|
|
Fortran::lower::mapSymbolAttributes(converter, *arg, symMap, stmtCtx);
|
|
} else {
|
|
// No need to create an extra hlfir.declare otherwise for
|
|
// numerical and logical scalar dummies.
|
|
symMap.addVariableDefinition(*arg, variableIface);
|
|
}
|
|
}
|
|
|
|
// Explicitly map statement function host associated symbols to their
|
|
// parent scope lowered symbol box.
|
|
for (const Fortran::semantics::SymbolRef &sym :
|
|
Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
|
|
if (const auto *details =
|
|
sym->detailsIf<Fortran::semantics::HostAssocDetails>())
|
|
converter.copySymbolBinding(details->symbol(), sym);
|
|
|
|
hlfir::Entity result = Fortran::lower::convertExprToHLFIR(
|
|
loc, converter, details.stmtFunction().value(), symMap, stmtCtx);
|
|
symMap.popScope();
|
|
// The result must not be a variable.
|
|
result = hlfir::loadTrivialScalar(loc, builder, result);
|
|
if (result.isVariable())
|
|
result = hlfir::Entity{builder.create<hlfir::AsExprOp>(loc, result)};
|
|
for (auto associate : exprAssociations)
|
|
builder.create<hlfir::EndAssociateOp>(loc, associate);
|
|
return hlfir::EntityWithAttributes{result};
|
|
}
|
|
|
|
namespace {
|
|
// Structure to hold the information about the call and the lowering context.
|
|
// This structure is intended to help threading the information
|
|
// through the various lowering calls without having to pass every
|
|
// required structure one by one.
|
|
struct CallContext {
|
|
CallContext(const Fortran::evaluate::ProcedureRef &procRef,
|
|
std::optional<mlir::Type> resultType, mlir::Location loc,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap,
|
|
Fortran::lower::StatementContext &stmtCtx)
|
|
: procRef{procRef}, converter{converter}, symMap{symMap},
|
|
stmtCtx{stmtCtx}, resultType{resultType}, loc{loc} {}
|
|
|
|
fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }
|
|
|
|
/// Is this a call to an elemental procedure with at least one array argument?
|
|
bool isElementalProcWithArrayArgs() const {
|
|
if (procRef.IsElemental())
|
|
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
|
|
procRef.arguments())
|
|
if (arg && arg->Rank() != 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Is this a statement function reference?
|
|
bool isStatementFunctionCall() const {
|
|
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
|
|
if (const auto *details =
|
|
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
|
|
return details->stmtFunction().has_value();
|
|
return false;
|
|
}
|
|
|
|
const Fortran::evaluate::ProcedureRef &procRef;
|
|
Fortran::lower::AbstractConverter &converter;
|
|
Fortran::lower::SymMap &symMap;
|
|
Fortran::lower::StatementContext &stmtCtx;
|
|
std::optional<mlir::Type> resultType;
|
|
mlir::Location loc;
|
|
};
|
|
|
|
/// This structure holds the initial lowered value of an actual argument that
|
|
/// was lowered regardless of the interface, and it holds whether or not it
|
|
/// may be absent at runtime and the dummy is optional.
|
|
struct PreparedActualArgument {
|
|
|
|
PreparedActualArgument(hlfir::Entity actual,
|
|
std::optional<mlir::Value> isPresent)
|
|
: actual{actual}, isPresent{isPresent} {}
|
|
void setElementalIndices(mlir::ValueRange &indices) {
|
|
oneBasedElementalIndices = &indices;
|
|
}
|
|
hlfir::Entity getActual(mlir::Location loc,
|
|
fir::FirOpBuilder &builder) const {
|
|
if (oneBasedElementalIndices)
|
|
return hlfir::getElementAt(loc, builder, actual,
|
|
*oneBasedElementalIndices);
|
|
return actual;
|
|
}
|
|
hlfir::Entity getOriginalActual() const { return actual; }
|
|
void setOriginalActual(hlfir::Entity newActual) { actual = newActual; }
|
|
bool handleDynamicOptional() const { return isPresent.has_value(); }
|
|
mlir::Value getIsPresent() const {
|
|
assert(handleDynamicOptional() && "not a dynamic optional");
|
|
return *isPresent;
|
|
}
|
|
|
|
void resetOptionalAspect() { isPresent = std::nullopt; }
|
|
|
|
private:
|
|
hlfir::Entity actual;
|
|
mlir::ValueRange *oneBasedElementalIndices{nullptr};
|
|
// When the actual may be dynamically optional, "isPresent"
|
|
// holds a boolean value indicating the presence of the
|
|
// actual argument at runtime.
|
|
std::optional<mlir::Value> isPresent;
|
|
};
|
|
} // namespace
|
|
|
|
/// Vector of pre-lowered actual arguments. nullopt if the actual is
|
|
/// "statically" absent (if it was not syntactically provided).
|
|
using PreparedActualArguments =
|
|
llvm::SmallVector<std::optional<PreparedActualArgument>>;
|
|
|
|
// Helper to transform a fir::ExtendedValue to an hlfir::EntityWithAttributes.
|
|
static hlfir::EntityWithAttributes
|
|
extendedValueToHlfirEntity(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
const fir::ExtendedValue &exv,
|
|
llvm::StringRef name) {
|
|
mlir::Value firBase = fir::getBase(exv);
|
|
if (fir::isa_trivial(firBase.getType()))
|
|
return hlfir::EntityWithAttributes{firBase};
|
|
if (auto charTy = firBase.getType().dyn_cast<fir::CharacterType>()) {
|
|
// CHAR() intrinsic and BIND(C) procedures returning CHARACTER(1)
|
|
// are lowered to a fir.char<kind,1> that is not in memory.
|
|
// This tends to cause a lot of bugs because the rest of the
|
|
// infrastructure is mostly tested with characters that are
|
|
// in memory.
|
|
// To avoid having to deal with this special case here and there,
|
|
// place it in memory here. If this turns out to be suboptimal,
|
|
// this could be fixed, but for now llvm opt -O1 is able to get
|
|
// rid of the memory indirection in a = char(b), so there is
|
|
// little incentive to increase the compiler complexity.
|
|
hlfir::Entity storage{builder.createTemporary(loc, charTy)};
|
|
builder.create<fir::StoreOp>(loc, firBase, storage);
|
|
auto asExpr = builder.create<hlfir::AsExprOp>(
|
|
loc, storage, /*mustFree=*/builder.createBool(loc, false));
|
|
return hlfir::EntityWithAttributes{asExpr.getResult()};
|
|
}
|
|
return hlfir::genDeclare(loc, builder, exv, name,
|
|
fir::FortranVariableFlagsAttr{});
|
|
}
|
|
namespace {
|
|
/// Structure to hold the clean-up related to a dummy argument preparation
|
|
/// that may have to be done after a call (copy-out or temporary deallocation).
|
|
struct CallCleanUp {
|
|
struct CopyIn {
|
|
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
|
|
builder.create<hlfir::CopyOutOp>(loc, copiedIn, wasCopied, copyBackVar);
|
|
}
|
|
mlir::Value copiedIn;
|
|
mlir::Value wasCopied;
|
|
// copyBackVar may be null if copy back is not needed.
|
|
mlir::Value copyBackVar;
|
|
};
|
|
struct ExprAssociate {
|
|
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
|
|
builder.create<hlfir::EndAssociateOp>(loc, tempVar, mustFree);
|
|
}
|
|
mlir::Value tempVar;
|
|
mlir::Value mustFree;
|
|
};
|
|
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
|
|
std::visit([&](auto &c) { c.genCleanUp(loc, builder); }, cleanUp);
|
|
}
|
|
std::variant<CopyIn, ExprAssociate> cleanUp;
|
|
};
|
|
|
|
/// Structure representing a prepared dummy argument.
|
|
/// It holds the value to be passed in the call and any related
|
|
/// clean-ups to be done after the call.
|
|
struct PreparedDummyArgument {
|
|
void setCopyInCleanUp(mlir::Value copiedIn, mlir::Value wasCopied,
|
|
mlir::Value copyBackVar) {
|
|
assert(!maybeCleanUp.has_value() && "clean-up already set");
|
|
maybeCleanUp =
|
|
CallCleanUp{CallCleanUp::CopyIn{copiedIn, wasCopied, copyBackVar}};
|
|
}
|
|
void setExprAssociateCleanUp(mlir::Value tempVar, mlir::Value wasCopied) {
|
|
assert(!maybeCleanUp.has_value() && "clean-up already set");
|
|
maybeCleanUp = CallCleanUp{CallCleanUp::ExprAssociate{tempVar, wasCopied}};
|
|
}
|
|
|
|
mlir::Value dummy;
|
|
std::optional<CallCleanUp> maybeCleanUp;
|
|
};
|
|
|
|
/// Structure to help conditionally preparing a dummy argument based
|
|
/// on the actual argument presence.
|
|
/// It helps "wrapping" the dummy and the clean-up information in
|
|
/// an if (present) {...}:
|
|
///
|
|
/// %conditionallyPrepared = fir.if (%present) {
|
|
/// fir.result %preparedDummy
|
|
/// } else {
|
|
/// fir.result %absent
|
|
/// }
|
|
///
|
|
struct ConditionallyPreparedDummy {
|
|
/// Create ConditionallyPreparedDummy from a preparedDummy that must
|
|
/// be wrapped in a fir.if.
|
|
ConditionallyPreparedDummy(PreparedDummyArgument &preparedDummy) {
|
|
thenResultValues.push_back(preparedDummy.dummy);
|
|
if (preparedDummy.maybeCleanUp) {
|
|
if (const auto *copyInCleanUp = std::get_if<CallCleanUp::CopyIn>(
|
|
&preparedDummy.maybeCleanUp->cleanUp)) {
|
|
thenResultValues.push_back(copyInCleanUp->copiedIn);
|
|
thenResultValues.push_back(copyInCleanUp->wasCopied);
|
|
if (copyInCleanUp->copyBackVar)
|
|
thenResultValues.push_back(copyInCleanUp->copyBackVar);
|
|
} else {
|
|
const auto &exprAssociate = std::get<CallCleanUp::ExprAssociate>(
|
|
preparedDummy.maybeCleanUp->cleanUp);
|
|
thenResultValues.push_back(exprAssociate.tempVar);
|
|
thenResultValues.push_back(exprAssociate.mustFree);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get the result types of the wrapping fir.if that must be created.
|
|
llvm::SmallVector<mlir::Type> getIfResulTypes() const {
|
|
llvm::SmallVector<mlir::Type> types;
|
|
for (mlir::Value res : thenResultValues)
|
|
types.push_back(res.getType());
|
|
return types;
|
|
}
|
|
|
|
/// Generate the "fir.result %preparedDummy" in the then branch of the
|
|
/// wrapping fir.if.
|
|
void genThenResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
|
|
builder.create<fir::ResultOp>(loc, thenResultValues);
|
|
}
|
|
|
|
/// Generate the "fir.result %absent" in the else branch of the
|
|
/// wrapping fir.if.
|
|
void genElseResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
|
|
llvm::SmallVector<mlir::Value> elseResultValues;
|
|
mlir::Type i1Type = builder.getI1Type();
|
|
for (mlir::Value res : thenResultValues) {
|
|
mlir::Type type = res.getType();
|
|
if (type == i1Type)
|
|
elseResultValues.push_back(builder.createBool(loc, false));
|
|
else
|
|
elseResultValues.push_back(builder.create<fir::AbsentOp>(loc, type));
|
|
}
|
|
builder.create<fir::ResultOp>(loc, elseResultValues);
|
|
}
|
|
|
|
/// Once the fir.if has been created, get the resulting %conditionallyPrepared
|
|
/// dummy argument.
|
|
PreparedDummyArgument
|
|
getPreparedDummy(fir::IfOp ifOp,
|
|
const PreparedDummyArgument &unconditionalDummy) {
|
|
PreparedDummyArgument preparedDummy;
|
|
preparedDummy.dummy = ifOp.getResults()[0];
|
|
if (unconditionalDummy.maybeCleanUp) {
|
|
if (const auto *copyInCleanUp = std::get_if<CallCleanUp::CopyIn>(
|
|
&unconditionalDummy.maybeCleanUp->cleanUp)) {
|
|
mlir::Value copyBackVar;
|
|
if (copyInCleanUp->copyBackVar)
|
|
copyBackVar = ifOp.getResults().back();
|
|
preparedDummy.setCopyInCleanUp(ifOp.getResults()[1],
|
|
ifOp.getResults()[2], copyBackVar);
|
|
} else {
|
|
preparedDummy.setExprAssociateCleanUp(ifOp.getResults()[1],
|
|
ifOp.getResults()[2]);
|
|
}
|
|
}
|
|
return preparedDummy;
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Value> thenResultValues;
|
|
};
|
|
} // namespace
|
|
|
|
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
|
|
/// prepare the actual argument according to the interface. Do as needed:
|
|
/// - address element if this is an array argument in an elemental call.
|
|
/// - set dynamic type to the dummy type if the dummy is not polymorphic.
|
|
/// - copy-in into contiguous variable if the dummy must be contiguous
|
|
/// - copy into a temporary if the dummy has the VALUE attribute.
|
|
/// - package the prepared dummy as required (fir.box, fir.class,
|
|
/// fir.box_char...).
|
|
/// This function should only be called with an actual that is present.
|
|
/// The optional aspects must be handled by this function user.
|
|
static PreparedDummyArgument preparePresentUserCallActualArgument(
|
|
mlir::Location loc, fir::FirOpBuilder &builder,
|
|
const PreparedActualArgument &preparedActual, mlir::Type dummyType,
|
|
const Fortran::lower::CallerInterface::PassedEntity &arg,
|
|
const Fortran::lower::SomeExpr &expr,
|
|
Fortran::evaluate::FoldingContext &foldingContext) {
|
|
|
|
// Step 1: get the actual argument, which includes addressing the
|
|
// element if this is an array in an elemental call.
|
|
hlfir::Entity actual = preparedActual.getActual(loc, builder);
|
|
|
|
const bool passingPolymorphicToNonPolymorphic =
|
|
actual.isPolymorphic() && !fir::isPolymorphicType(dummyType);
|
|
|
|
// When passing a CLASS(T) to TYPE(T), only the "T" part must be
|
|
// passed. Unless the entity is a scalar passed by raw address, a
|
|
// new descriptor must be made using the dummy argument type as
|
|
// dynamic type. This must be done before any copy/copy-in because the
|
|
// dynamic type matters to determine the contiguity.
|
|
const bool mustSetDynamicTypeToDummyType =
|
|
passingPolymorphicToNonPolymorphic &&
|
|
(actual.isArray() || dummyType.isa<fir::BaseBoxType>());
|
|
|
|
// The simple contiguity of the actual is "lost" when passing a polymorphic
|
|
// to a non polymorphic entity because the dummy dynamic type matters for
|
|
// the contiguity.
|
|
const bool mustDoCopyInOut =
|
|
actual.isArray() && arg.mustBeMadeContiguous() &&
|
|
(passingPolymorphicToNonPolymorphic ||
|
|
!Fortran::evaluate::IsSimplyContiguous(expr, foldingContext));
|
|
|
|
// Step 2: prepare the storage for the dummy arguments, ensuring that it
|
|
// matches the dummy requirements (e.g., must be contiguous or must be
|
|
// a temporary).
|
|
PreparedDummyArgument preparedDummy;
|
|
hlfir::Entity entity =
|
|
hlfir::derefPointersAndAllocatables(loc, builder, actual);
|
|
if (entity.isVariable()) {
|
|
if (mustSetDynamicTypeToDummyType) {
|
|
// Note: this is important to do this before any copy-in or copy so
|
|
// that the dummy is contiguous according to the dummy type.
|
|
mlir::Type boxType =
|
|
fir::BoxType::get(hlfir::getFortranElementOrSequenceType(dummyType));
|
|
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
|
|
loc, boxType, entity, /*shape=*/mlir::Value{},
|
|
/*slice=*/mlir::Value{})};
|
|
}
|
|
if (arg.hasValueAttribute()) {
|
|
// Make a copy in a temporary.
|
|
auto copy = builder.create<hlfir::AsExprOp>(loc, entity);
|
|
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
|
|
loc, builder, hlfir::Entity{copy}, dummyType, "adapt.valuebyref");
|
|
entity = hlfir::Entity{associate.getBase()};
|
|
// Register the temporary destruction after the call.
|
|
preparedDummy.setExprAssociateCleanUp(
|
|
associate.getFirBase(), associate.getMustFreeStrorageFlag());
|
|
} else if (mustDoCopyInOut) {
|
|
// Copy-in non contiguous variables.
|
|
assert(entity.getType().isa<fir::BaseBoxType>() &&
|
|
"expect non simply contiguous variables to be boxes");
|
|
auto copyIn = builder.create<hlfir::CopyInOp>(
|
|
loc, entity, /*var_is_present=*/mlir::Value{});
|
|
entity = hlfir::Entity{copyIn.getCopiedIn()};
|
|
// Register the copy-out after the call.
|
|
preparedDummy.setCopyInCleanUp(
|
|
copyIn.getCopiedIn(), copyIn.getWasCopied(),
|
|
arg.mayBeModifiedByCall() ? copyIn.getVar() : mlir::Value{});
|
|
}
|
|
} else {
|
|
// The actual is an expression value, place it into a temporary
|
|
// and register the temporary destruction after the call.
|
|
if (mustSetDynamicTypeToDummyType)
|
|
TODO(loc, "passing polymorphic array expression to non polymorphic "
|
|
"contiguous dummy");
|
|
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
|
|
loc, builder, entity, dummyType, "adapt.valuebyref");
|
|
entity = hlfir::Entity{associate.getBase()};
|
|
preparedDummy.setExprAssociateCleanUp(associate.getFirBase(),
|
|
associate.getMustFreeStrorageFlag());
|
|
}
|
|
|
|
// Step 3: now that the dummy argument storage has been prepared, package
|
|
// it according to the interface.
|
|
mlir::Value addr;
|
|
if (dummyType.isa<fir::BoxCharType>()) {
|
|
addr = hlfir::genVariableBoxChar(loc, builder, entity);
|
|
} else if (dummyType.isa<fir::BaseBoxType>()) {
|
|
entity = hlfir::genVariableBox(loc, builder, entity);
|
|
// Ensures the box has the right attributes and that it holds an
|
|
// addendum if needed.
|
|
mlir::Type boxEleType =
|
|
entity.getType().cast<fir::BaseBoxType>().getEleTy();
|
|
// For now, assume it is not OK to pass the allocatable/pointer
|
|
// descriptor to a non pointer/allocatable dummy. That is a strict
|
|
// interpretation of 18.3.6 point 4 that stipulates the descriptor
|
|
// has the dummy attributes in BIND(C) contexts.
|
|
const bool actualBoxHasAllocatableOrPointerFlag =
|
|
fir::isa_ref_type(boxEleType);
|
|
// On the callee side, the current code generated for unlimited
|
|
// polymorphic might unconditionally read the addendum. Intrinsic type
|
|
// descriptors may not have an addendum, the rebox below will create a
|
|
// descriptor with an addendum in such case.
|
|
const bool actualBoxHasAddendum =
|
|
fir::unwrapRefType(boxEleType).isa<fir::RecordType, mlir::NoneType>();
|
|
const bool needToAddAddendum =
|
|
fir::isUnlimitedPolymorphicType(dummyType) && !actualBoxHasAddendum;
|
|
if (needToAddAddendum || actualBoxHasAllocatableOrPointerFlag)
|
|
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
|
|
loc, dummyType, entity, /*shape=*/mlir::Value{},
|
|
/*slice=*/mlir::Value{})};
|
|
addr = entity;
|
|
} else {
|
|
addr = hlfir::genVariableRawAddress(loc, builder, entity);
|
|
}
|
|
preparedDummy.dummy = builder.createConvert(loc, dummyType, addr);
|
|
return preparedDummy;
|
|
}
|
|
|
|
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
|
|
/// prepare the actual argument according to the interface, taking care
|
|
/// of any optional aspect.
|
|
static PreparedDummyArgument prepareUserCallActualArgument(
|
|
mlir::Location loc, fir::FirOpBuilder &builder,
|
|
const PreparedActualArgument &preparedActual, mlir::Type dummyType,
|
|
const Fortran::lower::CallerInterface::PassedEntity &arg,
|
|
const Fortran::lower::SomeExpr &expr,
|
|
Fortran::evaluate::FoldingContext &foldingContext) {
|
|
if (!preparedActual.handleDynamicOptional())
|
|
return preparePresentUserCallActualArgument(
|
|
loc, builder, preparedActual, dummyType, arg, expr, foldingContext);
|
|
|
|
// Conditional dummy argument preparation. The actual may be absent
|
|
// at runtime, causing any addressing, copy, and packaging to have
|
|
// undefined behavior.
|
|
// To simplify the handling of this case, the "normal" dummy preparation
|
|
// helper is used, except its generated code is wrapped inside a
|
|
// fir.if(present).
|
|
mlir::Value isPresent = preparedActual.getIsPresent();
|
|
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
|
|
|
|
// Code generated in a preparation block that will become the
|
|
// "then" block in "if (present) then {} else {}". The reason
|
|
// for this unusual if/then/else generation is that the number
|
|
// and types of the if results will depend on how the argument
|
|
// is prepared, and forecasting that here would be brittle.
|
|
auto badIfOp = builder.create<fir::IfOp>(loc, dummyType, isPresent,
|
|
/*withElseRegion=*/false);
|
|
mlir::Block *preparationBlock = &badIfOp.getThenRegion().front();
|
|
builder.setInsertionPointToStart(preparationBlock);
|
|
PreparedDummyArgument unconditionalDummy =
|
|
preparePresentUserCallActualArgument(
|
|
loc, builder, preparedActual, dummyType, arg, expr, foldingContext);
|
|
builder.restoreInsertionPoint(insertPt);
|
|
|
|
// TODO: when forwarding an optional to an optional of the same kind
|
|
// (i.e, unconditionalDummy.dummy was not created in preparationBlock),
|
|
// the if/then/else generation could be skipped to improve the generated
|
|
// code.
|
|
|
|
// Now that the result types of the ifOp can be deduced, generate
|
|
// the "real" ifOp (operation result types cannot be changed, so
|
|
// badIfOp cannot be modified and used here).
|
|
llvm::SmallVector<mlir::Type> ifOpResultTypes;
|
|
ConditionallyPreparedDummy conditionalDummy(unconditionalDummy);
|
|
auto ifOp = builder.create<fir::IfOp>(loc, conditionalDummy.getIfResulTypes(),
|
|
isPresent,
|
|
/*withElseRegion=*/true);
|
|
// Move "preparationBlock" into the "then" of the new
|
|
// fir.if operation and create fir.result propagating
|
|
// unconditionalDummy.
|
|
preparationBlock->moveBefore(&ifOp.getThenRegion().back());
|
|
ifOp.getThenRegion().back().erase();
|
|
builder.setInsertionPointToEnd(&ifOp.getThenRegion().front());
|
|
conditionalDummy.genThenResult(loc, builder);
|
|
|
|
// Generate "else" branch with returning absent values.
|
|
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
|
|
conditionalDummy.genElseResult(loc, builder);
|
|
|
|
// Build dummy from IfOpResults.
|
|
builder.setInsertionPointAfter(ifOp);
|
|
PreparedDummyArgument result =
|
|
conditionalDummy.getPreparedDummy(ifOp, unconditionalDummy);
|
|
badIfOp->erase();
|
|
return result;
|
|
}
|
|
|
|
/// Lower calls to user procedures with actual arguments that have been
|
|
/// pre-lowered but not yet prepared according to the interface.
|
|
/// This can be called for elemental procedures, but only with scalar
|
|
/// arguments: if there are array arguments, it must be provided with
|
|
/// the array argument elements value and will return the corresponding
|
|
/// scalar result value.
|
|
static std::optional<hlfir::EntityWithAttributes>
|
|
genUserCall(PreparedActualArguments &loweredActuals,
|
|
Fortran::lower::CallerInterface &caller,
|
|
mlir::FunctionType callSiteType, CallContext &callContext) {
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
mlir::Location loc = callContext.loc;
|
|
fir::FirOpBuilder &builder = callContext.getBuilder();
|
|
llvm::SmallVector<CallCleanUp> callCleanUps;
|
|
for (auto [preparedActual, arg] :
|
|
llvm::zip(loweredActuals, caller.getPassedArguments())) {
|
|
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
|
|
if (!preparedActual) {
|
|
// Optional dummy argument for which there is no actual argument.
|
|
caller.placeInput(arg, builder.create<fir::AbsentOp>(loc, argTy));
|
|
continue;
|
|
}
|
|
const auto *expr = arg.entity->UnwrapExpr();
|
|
if (!expr)
|
|
TODO(loc, "assumed type actual argument");
|
|
|
|
switch (arg.passBy) {
|
|
case PassBy::Value: {
|
|
// True pass-by-value semantics.
|
|
assert(!preparedActual->handleDynamicOptional() && "cannot be optional");
|
|
hlfir::Entity actual = preparedActual->getActual(loc, builder);
|
|
auto value = hlfir::loadTrivialScalar(loc, builder, actual);
|
|
if (!value.isValue())
|
|
TODO(loc, "Passing CPTR an CFUNCTPTR VALUE in HLFIR");
|
|
caller.placeInput(arg, builder.createConvert(loc, argTy, value));
|
|
} break;
|
|
case PassBy::BaseAddressValueAttribute:
|
|
case PassBy::CharBoxValueAttribute:
|
|
case PassBy::Box:
|
|
case PassBy::BaseAddress:
|
|
case PassBy::BoxChar: {
|
|
PreparedDummyArgument preparedDummy = prepareUserCallActualArgument(
|
|
loc, builder, *preparedActual, argTy, arg, *expr,
|
|
callContext.converter.getFoldingContext());
|
|
if (preparedDummy.maybeCleanUp.has_value())
|
|
callCleanUps.emplace_back(std::move(*preparedDummy.maybeCleanUp));
|
|
caller.placeInput(arg, preparedDummy.dummy);
|
|
} break;
|
|
case PassBy::AddressAndLength:
|
|
// PassBy::AddressAndLength is only used for character results. Results
|
|
// are not handled here.
|
|
fir::emitFatalError(
|
|
loc, "unexpected PassBy::AddressAndLength for actual arguments");
|
|
break;
|
|
case PassBy::CharProcTuple: {
|
|
TODO(loc, "HLFIR PassBy::CharProcTuple");
|
|
} break;
|
|
case PassBy::MutableBox: {
|
|
hlfir::Entity actual = preparedActual->getActual(loc, builder);
|
|
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
|
|
*expr)) {
|
|
// If expr is NULL(), the mutableBox created must be a deallocated
|
|
// pointer with the dummy argument characteristics (see table 16.5
|
|
// in Fortran 2018 standard).
|
|
// No length parameters are set for the created box because any non
|
|
// deferred type parameters of the dummy will be evaluated on the
|
|
// callee side, and it is illegal to use NULL without a MOLD if any
|
|
// dummy length parameters are assumed.
|
|
mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
|
|
assert(boxTy && boxTy.isa<fir::BoxType>() && "must be a fir.box type");
|
|
mlir::Value boxStorage = builder.createTemporary(loc, boxTy);
|
|
mlir::Value nullBox = fir::factory::createUnallocatedBox(
|
|
builder, loc, boxTy, /*nonDeferredParams=*/{});
|
|
builder.create<fir::StoreOp>(loc, nullBox, boxStorage);
|
|
caller.placeInput(arg, boxStorage);
|
|
continue;
|
|
}
|
|
if (fir::isPointerType(argTy) &&
|
|
!Fortran::evaluate::IsObjectPointer(
|
|
*expr, callContext.converter.getFoldingContext())) {
|
|
// Passing a non POINTER actual argument to a POINTER dummy argument.
|
|
// Create a pointer of the dummy argument type and assign the actual
|
|
// argument to it.
|
|
TODO(loc, "Associate POINTER dummy to TARGET argument in HLFIR");
|
|
continue;
|
|
}
|
|
// Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
|
|
assert(actual.isMutableBox() && "actual must be a mutable box");
|
|
caller.placeInput(arg, actual);
|
|
if (fir::isAllocatableType(argTy) && arg.isIntentOut() &&
|
|
Fortran::semantics::IsBindCProcedure(
|
|
*callContext.procRef.proc().GetSymbol())) {
|
|
TODO(loc, "BIND(C) INTENT(OUT) allocatable deallocation in HLFIR");
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
// Prepare lowered arguments according to the interface
|
|
// and map the lowered values to the dummy
|
|
// arguments.
|
|
fir::ExtendedValue result = Fortran::lower::genCallOpAndResult(
|
|
loc, callContext.converter, callContext.symMap, callContext.stmtCtx,
|
|
caller, callSiteType, callContext.resultType);
|
|
|
|
/// Clean-up associations and copy-in.
|
|
for (auto cleanUp : callCleanUps)
|
|
cleanUp.genCleanUp(loc, builder);
|
|
|
|
if (!fir::getBase(result))
|
|
return std::nullopt; // subroutine call.
|
|
// TODO: "move" non pointer results into hlfir.expr.
|
|
return extendedValueToHlfirEntity(loc, builder, result, ".tmp.func_result");
|
|
}
|
|
|
|
/// Lower calls to intrinsic procedures with actual arguments that have been
|
|
/// pre-lowered but have not yet been prepared according to the interface.
|
|
static std::optional<hlfir::EntityWithAttributes>
|
|
genIntrinsicRefCore(PreparedActualArguments &loweredActuals,
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
const fir::IntrinsicArgumentLoweringRules *argLowering,
|
|
CallContext &callContext) {
|
|
llvm::SmallVector<fir::ExtendedValue> operands;
|
|
auto &stmtCtx = callContext.stmtCtx;
|
|
auto &converter = callContext.converter;
|
|
fir::FirOpBuilder &builder = callContext.getBuilder();
|
|
mlir::Location loc = callContext.loc;
|
|
for (auto arg : llvm::enumerate(loweredActuals)) {
|
|
if (!arg.value()) {
|
|
operands.emplace_back(fir::getAbsentIntrinsicArgument());
|
|
continue;
|
|
}
|
|
if (arg.value()->handleDynamicOptional())
|
|
TODO(loc, "intrinsic dynamically optional arguments");
|
|
hlfir::Entity actual = arg.value()->getActual(loc, builder);
|
|
if (!argLowering) {
|
|
// No argument lowering instruction, lower by value.
|
|
operands.emplace_back(
|
|
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
|
|
continue;
|
|
}
|
|
// Ad-hoc argument lowering handling.
|
|
fir::ArgLoweringRule argRules =
|
|
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
|
|
switch (argRules.lowerAs) {
|
|
case fir::LowerIntrinsicArgAs::Value:
|
|
operands.emplace_back(
|
|
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
|
|
continue;
|
|
case fir::LowerIntrinsicArgAs::Addr:
|
|
operands.emplace_back(
|
|
Fortran::lower::convertToAddress(loc, converter, actual, stmtCtx));
|
|
continue;
|
|
case fir::LowerIntrinsicArgAs::Box:
|
|
operands.emplace_back(
|
|
Fortran::lower::convertToBox(loc, converter, actual, stmtCtx));
|
|
continue;
|
|
case fir::LowerIntrinsicArgAs::Inquired:
|
|
// Place hlfir.expr in memory, and unbox fir.boxchar. Other entities
|
|
// are translated to fir::ExtendedValue without transformation (notably,
|
|
// pointers/allocatable are not dereferenced).
|
|
// TODO: once lowering to FIR retires, UBOUND and LBOUND can be simplified
|
|
// since the fir.box lowered here are now guaranteed to contain the local
|
|
// lower bounds thanks to the hlfir.declare (the extra rebox can be
|
|
// removed).
|
|
operands.emplace_back(Fortran::lower::translateToExtendedValue(
|
|
loc, builder, actual, stmtCtx));
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad switch");
|
|
}
|
|
// genIntrinsicCall needs the scalar type, even if this is a transformational
|
|
// procedure returning an array.
|
|
std::optional<mlir::Type> scalarResultType;
|
|
if (callContext.resultType)
|
|
scalarResultType = hlfir::getFortranElementType(*callContext.resultType);
|
|
// Let the intrinsic library lower the intrinsic procedure call.
|
|
auto [resultExv, mustBeFreed] =
|
|
genIntrinsicCall(callContext.getBuilder(), loc, intrinsic.name,
|
|
scalarResultType, operands);
|
|
if (!fir::getBase(resultExv))
|
|
return std::nullopt;
|
|
hlfir::EntityWithAttributes resultEntity = extendedValueToHlfirEntity(
|
|
loc, builder, resultExv, ".tmp.intrinsic_result");
|
|
// Move result into memory into an hlfir.expr since they are immutable from
|
|
// that point, and the result storage is some temp.
|
|
if (resultEntity.isVariable()) {
|
|
hlfir::AsExprOp asExpr;
|
|
// Character/Derived MERGE lowering returns one of its argument address
|
|
// (this is the only intrinsic implemented in that way so far). The
|
|
// ownership of this address cannot be taken here since it may not be a
|
|
// temp.
|
|
if (intrinsic.name == "merge")
|
|
asExpr = builder.create<hlfir::AsExprOp>(loc, resultEntity);
|
|
else
|
|
asExpr = builder.create<hlfir::AsExprOp>(
|
|
loc, resultEntity, builder.createBool(loc, mustBeFreed));
|
|
resultEntity = hlfir::EntityWithAttributes{asExpr.getResult()};
|
|
}
|
|
return resultEntity;
|
|
}
|
|
|
|
namespace {
|
|
template <typename ElementalCallBuilderImpl>
|
|
class ElementalCallBuilder {
|
|
public:
|
|
std::optional<hlfir::EntityWithAttributes>
|
|
genElementalCall(PreparedActualArguments &loweredActuals, bool isImpure,
|
|
CallContext &callContext) {
|
|
mlir::Location loc = callContext.loc;
|
|
fir::FirOpBuilder &builder = callContext.getBuilder();
|
|
unsigned numArgs = loweredActuals.size();
|
|
// Step 1: dereference pointers/allocatables and compute elemental shape.
|
|
mlir::Value shape;
|
|
PreparedActualArgument *optionalWithShape;
|
|
// 10.1.4 p5. Impure elemental procedures must be called in element order.
|
|
bool mustBeOrdered = isImpure;
|
|
for (unsigned i = 0; i < numArgs; ++i) {
|
|
auto &preparedActual = loweredActuals[i];
|
|
if (preparedActual) {
|
|
hlfir::Entity actual = preparedActual->getOriginalActual();
|
|
// Elemental procedure dummy arguments cannot be pointer/allocatables
|
|
// (C15100), so it is safe to dereference any pointer or allocatable
|
|
// actual argument now instead of doing this inside the elemental
|
|
// region.
|
|
actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
|
|
// Better to load scalars outside of the loop when possible.
|
|
if (!preparedActual->handleDynamicOptional() &&
|
|
impl().canLoadActualArgumentBeforeLoop(i))
|
|
actual = hlfir::loadTrivialScalar(loc, builder, actual);
|
|
// TODO: merge shape instead of using the first one.
|
|
if (!shape && actual.isArray()) {
|
|
if (preparedActual->handleDynamicOptional())
|
|
optionalWithShape = &*preparedActual;
|
|
else
|
|
shape = hlfir::genShape(loc, builder, actual);
|
|
}
|
|
// 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
|
|
// arguments must be called in element order.
|
|
if (impl().argMayBeModifiedByCall(i))
|
|
mustBeOrdered = true;
|
|
// Propagates pointer dereferences and scalar loads.
|
|
preparedActual->setOriginalActual(actual);
|
|
}
|
|
}
|
|
if (!shape && optionalWithShape) {
|
|
// If all array operands appear in optional positions, then none of them
|
|
// is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
|
|
// first operand.
|
|
shape =
|
|
hlfir::genShape(loc, builder, optionalWithShape->getOriginalActual());
|
|
// TODO: There is an opportunity to add a runtime check here that
|
|
// this array is present as required. Also, the optionality of all actual
|
|
// could be checked and reset given the Fortran requirement.
|
|
optionalWithShape->resetOptionalAspect();
|
|
}
|
|
assert(shape &&
|
|
"elemental array calls must have at least one array arguments");
|
|
if (mustBeOrdered)
|
|
TODO(loc, "ordered elemental calls in HLFIR");
|
|
// Push a new local scope so that any temps made inside the elemental
|
|
// iterations are cleaned up inside the iterations.
|
|
if (!callContext.resultType) {
|
|
// Subroutine case. Generate call inside loop nest.
|
|
auto [innerLoop, oneBasedIndicesVector] =
|
|
hlfir::genLoopNest(loc, builder, shape);
|
|
mlir::ValueRange oneBasedIndices = oneBasedIndicesVector;
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(innerLoop.getBody());
|
|
callContext.stmtCtx.pushScope();
|
|
for (auto &preparedActual : loweredActuals)
|
|
if (preparedActual)
|
|
preparedActual->setElementalIndices(oneBasedIndices);
|
|
impl().genElementalKernel(loweredActuals, callContext);
|
|
callContext.stmtCtx.finalizeAndPop();
|
|
builder.restoreInsertionPoint(insPt);
|
|
return std::nullopt;
|
|
}
|
|
// Function case: generate call inside hlfir.elemental
|
|
mlir::Type elementType =
|
|
hlfir::getFortranElementType(*callContext.resultType);
|
|
// Get result length parameters.
|
|
llvm::SmallVector<mlir::Value> typeParams;
|
|
if (elementType.isa<fir::CharacterType>() ||
|
|
fir::isRecordWithTypeParameters(elementType)) {
|
|
auto charType = elementType.dyn_cast<fir::CharacterType>();
|
|
if (charType && charType.hasConstantLen())
|
|
typeParams.push_back(builder.createIntegerConstant(
|
|
loc, builder.getIndexType(), charType.getLen()));
|
|
else if (charType)
|
|
typeParams.push_back(impl().computeDynamicCharacterResultLength(
|
|
loweredActuals, callContext));
|
|
else
|
|
TODO(
|
|
loc,
|
|
"compute elemental PDT function result length parameters in HLFIR");
|
|
}
|
|
auto genKernel = [&](mlir::Location l, fir::FirOpBuilder &b,
|
|
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
|
|
callContext.stmtCtx.pushScope();
|
|
for (auto &preparedActual : loweredActuals)
|
|
if (preparedActual)
|
|
preparedActual->setElementalIndices(oneBasedIndices);
|
|
auto res = *impl().genElementalKernel(loweredActuals, callContext);
|
|
callContext.stmtCtx.finalizeAndPop();
|
|
// Note that an hlfir.destroy is not emitted for the result since it
|
|
// is still used by the hlfir.yield_element that also marks its last
|
|
// use.
|
|
return res;
|
|
};
|
|
mlir::Value elemental = hlfir::genElementalOp(loc, builder, elementType,
|
|
shape, typeParams, genKernel);
|
|
fir::FirOpBuilder *bldr = &builder;
|
|
callContext.stmtCtx.attachCleanup(
|
|
[=]() { bldr->create<hlfir::DestroyOp>(loc, elemental); });
|
|
return hlfir::EntityWithAttributes{elemental};
|
|
}
|
|
|
|
private:
|
|
ElementalCallBuilderImpl &impl() {
|
|
return *static_cast<ElementalCallBuilderImpl *>(this);
|
|
}
|
|
};
|
|
|
|
class ElementalUserCallBuilder
|
|
: public ElementalCallBuilder<ElementalUserCallBuilder> {
|
|
public:
|
|
ElementalUserCallBuilder(Fortran::lower::CallerInterface &caller,
|
|
mlir::FunctionType callSiteType)
|
|
: caller{caller}, callSiteType{callSiteType} {}
|
|
std::optional<hlfir::Entity>
|
|
genElementalKernel(PreparedActualArguments &loweredActuals,
|
|
CallContext &callContext) {
|
|
return genUserCall(loweredActuals, caller, callSiteType, callContext);
|
|
}
|
|
|
|
bool argMayBeModifiedByCall(unsigned argIdx) const {
|
|
assert(argIdx < caller.getPassedArguments().size() && "bad argument index");
|
|
return caller.getPassedArguments()[argIdx].mayBeModifiedByCall();
|
|
}
|
|
|
|
bool canLoadActualArgumentBeforeLoop(unsigned argIdx) const {
|
|
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
|
|
assert(argIdx < caller.getPassedArguments().size() && "bad argument index");
|
|
// If the actual argument does not need to be passed via an address,
|
|
// or will be passed in the address of a temporary copy, it can be loaded
|
|
// before the elemental loop nest.
|
|
const auto &arg = caller.getPassedArguments()[argIdx];
|
|
return arg.passBy == PassBy::Value ||
|
|
arg.passBy == PassBy::BaseAddressValueAttribute;
|
|
}
|
|
|
|
mlir::Value
|
|
computeDynamicCharacterResultLength(PreparedActualArguments &loweredActuals,
|
|
CallContext &callContext) {
|
|
TODO(callContext.loc,
|
|
"compute elemental function result length parameters in HLFIR");
|
|
}
|
|
|
|
private:
|
|
Fortran::lower::CallerInterface &caller;
|
|
mlir::FunctionType callSiteType;
|
|
};
|
|
|
|
class ElementalIntrinsicCallBuilder
|
|
: public ElementalCallBuilder<ElementalIntrinsicCallBuilder> {
|
|
public:
|
|
ElementalIntrinsicCallBuilder(
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
const fir::IntrinsicArgumentLoweringRules *argLowering, bool isFunction)
|
|
: intrinsic{intrinsic}, argLowering{argLowering}, isFunction{isFunction} {
|
|
}
|
|
std::optional<hlfir::Entity>
|
|
genElementalKernel(PreparedActualArguments &loweredActuals,
|
|
CallContext &callContext) {
|
|
return genIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
|
|
callContext);
|
|
}
|
|
// Elemental intrinsic functions cannot modify their arguments.
|
|
bool argMayBeModifiedByCall(int) const { return !isFunction; }
|
|
bool canLoadActualArgumentBeforeLoop(int) const {
|
|
// Elemental intrinsic functions never need the actual addresses
|
|
// of their arguments.
|
|
return isFunction;
|
|
}
|
|
|
|
mlir::Value
|
|
computeDynamicCharacterResultLength(PreparedActualArguments &loweredActuals,
|
|
CallContext &callContext) {
|
|
if (intrinsic.name == "adjustr" || intrinsic.name == "adjustl" ||
|
|
intrinsic.name == "merge")
|
|
return hlfir::genCharLength(
|
|
callContext.loc, callContext.getBuilder(),
|
|
loweredActuals[0].value().getOriginalActual());
|
|
// Character MIN/MAX is the min/max of the arguments length that are
|
|
// present.
|
|
TODO(callContext.loc,
|
|
"compute elemental character min/max function result length in HLFIR");
|
|
}
|
|
|
|
private:
|
|
const Fortran::evaluate::SpecificIntrinsic &intrinsic;
|
|
const fir::IntrinsicArgumentLoweringRules *argLowering;
|
|
const bool isFunction;
|
|
};
|
|
} // namespace
|
|
|
|
static std::optional<mlir::Value>
|
|
genIsPresentIfArgMaybeAbsent(mlir::Location loc, hlfir::Entity actual,
|
|
const Fortran::lower::SomeExpr &expr,
|
|
CallContext &callContext,
|
|
bool passAsAllocatableOrPointer) {
|
|
if (!Fortran::evaluate::MayBePassedAsAbsentOptional(
|
|
expr, callContext.converter.getFoldingContext()))
|
|
return std::nullopt;
|
|
fir::FirOpBuilder &builder = callContext.getBuilder();
|
|
if (!passAsAllocatableOrPointer &&
|
|
Fortran::evaluate::IsAllocatableOrPointerObject(
|
|
expr, callContext.converter.getFoldingContext())) {
|
|
// Passing Allocatable/Pointer to non-pointer/non-allocatable OPTIONAL.
|
|
// Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, it is
|
|
// as if the argument was absent. The main care here is to not do a
|
|
// copy-in/copy-out because the temp address, even though pointing to a
|
|
// null size storage, would not be a nullptr and therefore the argument
|
|
// would not be considered absent on the callee side. Note: if the
|
|
// allocatable/pointer is also optional, it cannot be absent as per
|
|
// 15.5.2.12 point 7. and 8. We rely on this to un-conditionally read
|
|
// the allocatable/pointer descriptor here.
|
|
mlir::Value addr = genVariableRawAddress(loc, builder, actual);
|
|
return builder.genIsNotNullAddr(loc, addr);
|
|
}
|
|
// TODO: what if passing allocatable target to optional intent(in) pointer?
|
|
// May fall into the category above if the allocatable is not optional.
|
|
|
|
// Passing an optional to an optional.
|
|
return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
|
|
.getResult();
|
|
}
|
|
|
|
/// Lower an intrinsic procedure reference.
|
|
static std::optional<hlfir::EntityWithAttributes>
|
|
genIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic &intrinsic,
|
|
CallContext &callContext) {
|
|
mlir::Location loc = callContext.loc;
|
|
auto &converter = callContext.converter;
|
|
if (Fortran::lower::intrinsicRequiresCustomOptionalHandling(
|
|
callContext.procRef, intrinsic, converter))
|
|
TODO(loc, "special cases of intrinsic with optional arguments");
|
|
|
|
PreparedActualArguments loweredActuals;
|
|
const fir::IntrinsicArgumentLoweringRules *argLowering =
|
|
fir::getIntrinsicArgumentLowering(intrinsic.name);
|
|
for (const auto &arg : llvm::enumerate(callContext.procRef.arguments())) {
|
|
auto *expr =
|
|
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
|
|
if (!expr) {
|
|
// Absent optional.
|
|
loweredActuals.push_back(std::nullopt);
|
|
continue;
|
|
}
|
|
auto loweredActual = Fortran::lower::convertExprToHLFIR(
|
|
loc, callContext.converter, *expr, callContext.symMap,
|
|
callContext.stmtCtx);
|
|
std::optional<mlir::Value> isPresent;
|
|
if (argLowering) {
|
|
fir::ArgLoweringRule argRules =
|
|
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
|
|
if (argRules.handleDynamicOptional)
|
|
isPresent =
|
|
genIsPresentIfArgMaybeAbsent(loc, loweredActual, *expr, callContext,
|
|
/*passAsAllocatableOrPointer=*/false);
|
|
}
|
|
loweredActuals.push_back(PreparedActualArgument{loweredActual, isPresent});
|
|
}
|
|
|
|
if (callContext.isElementalProcWithArrayArgs()) {
|
|
// All intrinsic elemental functions are pure.
|
|
const bool isFunction = callContext.resultType.has_value();
|
|
return ElementalIntrinsicCallBuilder{intrinsic, argLowering, isFunction}
|
|
.genElementalCall(loweredActuals, /*isImpure=*/!isFunction, callContext)
|
|
.value();
|
|
}
|
|
std::optional<hlfir::EntityWithAttributes> result =
|
|
genIntrinsicRefCore(loweredActuals, intrinsic, argLowering, callContext);
|
|
if (result && result->getType().isa<hlfir::ExprType>()) {
|
|
fir::FirOpBuilder *bldr = &callContext.getBuilder();
|
|
callContext.stmtCtx.attachCleanup(
|
|
[=]() { bldr->create<hlfir::DestroyOp>(loc, *result); });
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Main entry point to lower procedure references, regardless of what they are.
|
|
static std::optional<hlfir::EntityWithAttributes>
|
|
genProcedureRef(CallContext &callContext) {
|
|
mlir::Location loc = callContext.loc;
|
|
if (auto *intrinsic = callContext.procRef.proc().GetSpecificIntrinsic())
|
|
return genIntrinsicRef(*intrinsic, callContext);
|
|
|
|
if (callContext.isStatementFunctionCall())
|
|
return genStmtFunctionRef(loc, callContext.converter, callContext.symMap,
|
|
callContext.stmtCtx, callContext.procRef);
|
|
|
|
Fortran::lower::CallerInterface caller(callContext.procRef,
|
|
callContext.converter);
|
|
mlir::FunctionType callSiteType = caller.genFunctionType();
|
|
|
|
PreparedActualArguments loweredActuals;
|
|
// Lower the actual arguments
|
|
for (const Fortran::lower::CallInterface<
|
|
Fortran::lower::CallerInterface>::PassedEntity &arg :
|
|
caller.getPassedArguments())
|
|
if (const auto *actual = arg.entity) {
|
|
const auto *expr = actual->UnwrapExpr();
|
|
if (!expr)
|
|
TODO(loc, "assumed type actual argument");
|
|
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
|
|
*expr)) {
|
|
if (arg.passBy !=
|
|
Fortran::lower::CallerInterface::PassEntityBy::MutableBox) {
|
|
assert(
|
|
arg.isOptional() &&
|
|
"NULL must be passed only to pointer, allocatable, or OPTIONAL");
|
|
// Trying to lower NULL() outside of any context would lead to
|
|
// trouble. NULL() here is equivalent to not providing the
|
|
// actual argument.
|
|
loweredActuals.emplace_back(std::nullopt);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
auto loweredActual = Fortran::lower::convertExprToHLFIR(
|
|
loc, callContext.converter, *expr, callContext.symMap,
|
|
callContext.stmtCtx);
|
|
std::optional<mlir::Value> isPresent;
|
|
if (arg.isOptional())
|
|
isPresent = genIsPresentIfArgMaybeAbsent(
|
|
loc, loweredActual, *expr, callContext,
|
|
arg.passBy ==
|
|
Fortran::lower::CallerInterface::PassEntityBy::MutableBox);
|
|
|
|
loweredActuals.emplace_back(
|
|
PreparedActualArgument{loweredActual, isPresent});
|
|
} else {
|
|
// Optional dummy argument for which there is no actual argument.
|
|
loweredActuals.emplace_back(std::nullopt);
|
|
}
|
|
if (callContext.isElementalProcWithArrayArgs()) {
|
|
bool isImpure = false;
|
|
if (const Fortran::semantics::Symbol *procSym =
|
|
callContext.procRef.proc().GetSymbol())
|
|
isImpure = !Fortran::semantics::IsPureProcedure(*procSym);
|
|
return ElementalUserCallBuilder{caller, callSiteType}.genElementalCall(
|
|
loweredActuals, isImpure, callContext);
|
|
}
|
|
return genUserCall(loweredActuals, caller, callSiteType, callContext);
|
|
}
|
|
|
|
std::optional<hlfir::EntityWithAttributes> Fortran::lower::convertCallToHLFIR(
|
|
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
|
|
const evaluate::ProcedureRef &procRef, std::optional<mlir::Type> resultType,
|
|
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
|
|
CallContext callContext(procRef, resultType, loc, converter, symMap, stmtCtx);
|
|
return genProcedureRef(callContext);
|
|
}
|