mirror of
https://github.com/intel/llvm.git
synced 2026-01-31 16:29:50 +08:00
This change lifts the limitation that only the trailing dimensions/sizes
in dynamic index lists can be scalable. It allows us to extend
`MaskedVectorizeOp` and `TileOp` from the Transform dialect so that the
following is allowed:
%1, %loops:3 = transform.structured.tile %0 [4, [4], [4]]
This is also a follow up for https://reviews.llvm.org/D153372
that will enable the following (middle vector dimension is scalable):
transform.structured.masked_vectorize %0 vector_sizes [2, [4], 8]
To facilate this change, the hooks for parsing and printing dynamic
index lists are updated accordingly (`printDynamicIndexList` and
`parseDynamicIndexList`, respectively). `MaskedVectorizeOp` and `TileOp`
are updated to include an array of attribute of bools that captures
whether the corresponding vector dimension/tile size, respectively, are
scalable or not.
NOTE 1: I am re-landing this after the initial version was reverted. To
fix the regression and in addition to the original patch, this revision
updates the Python bindings for the transform dialect
NOTE 2: This change is a part of a larger effort to enable scalable
vectorisation in Linalg. See this RFC for more context:
* https://discourse.llvm.org/t/rfc-scalable-vectorisation-in-linalg/
This relands 048764f23a with fixes.
Differential Revision: https://reviews.llvm.org/D154336
47 lines
1.8 KiB
C++
47 lines
1.8 KiB
C++
//===- Utils.cpp - Transform dialect utilities ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Transform/Utils/Utils.h"
|
|
|
|
#include "mlir/IR/OpDefinition.h"
|
|
#include "mlir/Interfaces/ViewLikeInterface.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::transform;
|
|
|
|
void mlir::transform::printPackedOrDynamicIndexList(
|
|
OpAsmPrinter &printer, Operation *op, Value packed, Type packedType,
|
|
OperandRange values, TypeRange valueTypes, ArrayRef<int64_t> integers) {
|
|
if (packed) {
|
|
assert(values.empty() && integers.empty() && "expected no values/integers");
|
|
printer << "*(" << packed << " : " << packedType << ")";
|
|
return;
|
|
}
|
|
printDynamicIndexList(printer, op, values, integers, valueTypes);
|
|
}
|
|
|
|
ParseResult mlir::transform::parsePackedOrDynamicIndexList(
|
|
OpAsmParser &parser, std::optional<OpAsmParser::UnresolvedOperand> &packed,
|
|
Type &packedType, SmallVectorImpl<OpAsmParser::UnresolvedOperand> &values,
|
|
SmallVectorImpl<Type> &valueTypes, DenseI64ArrayAttr &integers) {
|
|
OpAsmParser::UnresolvedOperand packedOperand;
|
|
if (parser.parseOptionalStar().succeeded()) {
|
|
if (parser.parseLParen().failed() ||
|
|
parser.parseOperand(packedOperand).failed() ||
|
|
parser.parseColonType(packedType).failed() ||
|
|
parser.parseRParen().failed()) {
|
|
return failure();
|
|
}
|
|
packed.emplace(packedOperand);
|
|
integers = parser.getBuilder().getDenseI64ArrayAttr({});
|
|
return success();
|
|
}
|
|
|
|
return parseDynamicIndexList(parser, values, integers, &valueTypes);
|
|
}
|