mirror of
https://github.com/intel/llvm.git
synced 2026-01-27 14:50:42 +08:00
Since second argument is always fully overwritten and shape is define in "to" clause, it is not needed. Also renamed "into" to "to" now that arg is dropped. PiperOrigin-RevId: 282686475
1028 lines
43 KiB
C++
1028 lines
43 KiB
C++
//===- VectorOps.cpp - MLIR Super Vectorizer Operations -------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements convenience types for working with super-vectorization
|
|
// operations, in particular super-vector loads and stores.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/VectorOps/VectorOps.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Support/Functional.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::vector;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorOpsDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
mlir::vector::VectorOpsDialect::VectorOpsDialect(MLIRContext *context)
|
|
: Dialect(getDialectNamespace(), context) {
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
|
|
>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ContractionOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static ParseResult parseContractionOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
OpAsmParser::OperandType lhsInfo;
|
|
OpAsmParser::OperandType rhsInfo;
|
|
OpAsmParser::OperandType accInfo;
|
|
SmallVector<OpAsmParser::OperandType, 2> masksInfo;
|
|
SmallVector<Type, 2> types;
|
|
Type resultVectorType;
|
|
auto loc = parser.getCurrentLocation();
|
|
DictionaryAttr dictAttr;
|
|
// TODO(andydavis, ntv) Unify linalg op attribute parsing.
|
|
if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
|
|
parser.parseOperand(lhsInfo) || parser.parseComma() ||
|
|
parser.parseOperand(rhsInfo) || parser.parseComma() ||
|
|
parser.parseOperand(accInfo) ||
|
|
parser.parseTrailingOperandList(masksInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonTypeList(types) ||
|
|
parser.parseKeywordType("into", resultVectorType) ||
|
|
parser.resolveOperand(lhsInfo, types[0], result.operands) ||
|
|
parser.resolveOperand(rhsInfo, types[1], result.operands) ||
|
|
parser.resolveOperand(accInfo, resultVectorType, result.operands) ||
|
|
parser.addTypeToList(resultVectorType, result.types))
|
|
return failure();
|
|
result.attributes.assign(dictAttr.getValue().begin(),
|
|
dictAttr.getValue().end());
|
|
if (masksInfo.empty())
|
|
return success();
|
|
if (masksInfo.size() != 2)
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected zero or exactly 2 vector mask operands");
|
|
auto indexType = parser.getBuilder().getIndexType();
|
|
auto lhsType = types[0].cast<VectorType>();
|
|
auto rhsType = types[1].cast<VectorType>();
|
|
SmallVector<Type, 2> maskTypes;
|
|
SmallVector<Type, 4> lhsMaskElementTypes(lhsType.getRank(), indexType);
|
|
maskTypes.push_back(
|
|
TupleType::get(lhsMaskElementTypes, parser.getBuilder().getContext()));
|
|
SmallVector<Type, 4> rhsMaskElementTypes(rhsType.getRank(), indexType);
|
|
maskTypes.push_back(
|
|
TupleType::get(rhsMaskElementTypes, parser.getBuilder().getContext()));
|
|
if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, ContractionOp op) {
|
|
// TODO(andydavis, ntv) Unify printing code with linalg ops.
|
|
auto attrNames = op.getTraitAttrNames();
|
|
llvm::StringSet<> traitAttrsSet;
|
|
traitAttrsSet.insert(attrNames.begin(), attrNames.end());
|
|
SmallVector<NamedAttribute, 8> attrs;
|
|
for (auto attr : op.getAttrs()) {
|
|
if (traitAttrsSet.count(attr.first.strref()) > 0)
|
|
attrs.push_back(attr);
|
|
}
|
|
auto dictAttr = DictionaryAttr::get(attrs, op.getContext());
|
|
p << op.getOperationName() << " " << dictAttr << " " << *op.lhs() << ", ";
|
|
p << *op.rhs() << ", " << *op.acc();
|
|
if (llvm::size(op.masks()) == 2) {
|
|
p << ", " << **op.masks().begin();
|
|
p << ", " << **(op.masks().begin() + 1);
|
|
}
|
|
p.printOptionalAttrDict(op.getAttrs(), attrNames);
|
|
p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType() << " into "
|
|
<< op.getResultType();
|
|
}
|
|
|
|
static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
|
|
const std::vector<std::pair<int64_t, int64_t>> &map) {
|
|
for (auto &dimPair : map) {
|
|
if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
|
|
dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
|
|
lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool verifyOutputShape(
|
|
VectorType lhsType, VectorType rhsType, VectorType accType,
|
|
VectorType resType,
|
|
const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
|
|
const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
|
|
DenseSet<int64_t> lhsContractingDimSet;
|
|
DenseSet<int64_t> rhsContractingDimSet;
|
|
for (auto &dimPair : contractingDimMap) {
|
|
lhsContractingDimSet.insert(dimPair.first);
|
|
rhsContractingDimSet.insert(dimPair.second);
|
|
}
|
|
DenseSet<int64_t> rhsBatchDimSet;
|
|
for (auto &dimPair : batchDimMap)
|
|
rhsBatchDimSet.insert(dimPair.second);
|
|
|
|
// Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
|
|
SmallVector<int64_t, 4> expectedResultDims;
|
|
for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
|
|
if (lhsContractingDimSet.count(i) > 0)
|
|
continue;
|
|
expectedResultDims.push_back(lhsType.getDimSize(i));
|
|
}
|
|
|
|
// Add free dimensions from 'rhsType' to 'expectedResultDims'.
|
|
for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
|
|
if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
|
|
continue;
|
|
expectedResultDims.push_back(rhsType.getDimSize(i));
|
|
}
|
|
|
|
// Verify dimension from 'resType' against 'expectedResultDims'.
|
|
if (resType.getShape().size() != expectedResultDims.size() ||
|
|
accType.getShape().size() != expectedResultDims.size())
|
|
return false;
|
|
for (int64_t i = 0, e = resType.getRank(); i < e; ++i) {
|
|
if (resType.getDimSize(i) != expectedResultDims[i] ||
|
|
accType.getDimSize(i) != expectedResultDims[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static LogicalResult verify(ContractionOp op) {
|
|
auto lhsType = op.getLhsType();
|
|
auto rhsType = op.getRhsType();
|
|
auto accType = op.getAccType();
|
|
auto resType = op.getResultType();
|
|
|
|
// Verify that an indexing map was specified for each vector operand.
|
|
if (op.indexing_maps().size() != 3)
|
|
return op.emitOpError("expected an indexing map for each vector operand");
|
|
|
|
// Verify that each index map has 'numIterators' inputs, no symbols, and
|
|
// that the number of map outputs equals the rank of its associated
|
|
// vector operand.
|
|
unsigned numIterators = op.iterator_types().getValue().size();
|
|
for (auto it : llvm::enumerate(op.indexing_maps())) {
|
|
auto index = it.index();
|
|
auto map = it.value().cast<AffineMapAttr>().getValue();
|
|
if (map.getNumSymbols() != 0)
|
|
return op.emitOpError("expected indexing map ")
|
|
<< index << " to have no symbols";
|
|
if (map.getNumDims() != numIterators)
|
|
return op.emitOpError("expected indexing map ")
|
|
<< index << " to have " << numIterators << " number of inputs";
|
|
auto operandType = op.getOperand(index)->getType().cast<VectorType>();
|
|
unsigned rank = operandType.getShape().size();
|
|
if (map.getNumResults() != rank)
|
|
return op.emitOpError("expected indexing map ")
|
|
<< index << " to have " << rank << " number of outputs";
|
|
if (!map.isProjectedPermutation())
|
|
return op.emitOpError("expected indexing map ")
|
|
<< index << " to be a projected permutation of its inputs";
|
|
}
|
|
|
|
auto contractingDimMap = op.getContractingDimMap();
|
|
auto batchDimMap = op.getBatchDimMap();
|
|
|
|
// Verify at least one contracting dimension pair was specified.
|
|
if (contractingDimMap.empty())
|
|
return op.emitOpError("expected at least one contracting dimension pair");
|
|
|
|
// Verify contracting dimension map was properly constructed.
|
|
if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
|
|
return op.emitOpError("invalid contracting dimension map");
|
|
|
|
// Verify batch dimension map was properly constructed.
|
|
if (!verifyDimMap(lhsType, rhsType, batchDimMap))
|
|
return op.emitOpError("invalid batch dimension map");
|
|
|
|
// Verify 'accType' and 'resType' shape.
|
|
if (!verifyOutputShape(lhsType, rhsType, accType, resType, contractingDimMap,
|
|
batchDimMap))
|
|
return op.emitOpError("invalid accumulator/result vector shape");
|
|
|
|
// Verify that either two vector masks are set or none are set.
|
|
auto lhsMaskType = op.getLHSVectorMaskType();
|
|
auto rhsMaskType = op.getRHSVectorMaskType();
|
|
if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
|
|
return op.emitOpError("invalid number of vector masks specified");
|
|
if (lhsMaskType && rhsMaskType) {
|
|
// Verify tuple element size is != rank.
|
|
if (lhsMaskType.getTypes().size() != lhsType.getShape().size() ||
|
|
rhsMaskType.getTypes().size() != rhsType.getShape().size())
|
|
return op.emitOpError("invalid number of vector mask elements");
|
|
// Verify all tuple elements are index type.
|
|
for (auto eltType : lhsMaskType.getTypes()) {
|
|
if (!eltType.isa<IndexType>())
|
|
return op.emitOpError("vector mask element must have index type");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
SmallVector<StringRef, 2> ContractionOp::getTraitAttrNames() {
|
|
return SmallVector<StringRef, 2>{"indexing_maps", "iterator_types"};
|
|
}
|
|
|
|
static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
|
|
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
|
|
if (targetExpr == map.getResult(i))
|
|
return i;
|
|
return -1;
|
|
}
|
|
|
|
static std::vector<std::pair<int64_t, int64_t>>
|
|
getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
|
|
StringRef targetIteratorTypeName, MLIRContext *context) {
|
|
std::vector<std::pair<int64_t, int64_t>> dimMap;
|
|
for (auto it : llvm::enumerate(iteratorTypes)) {
|
|
auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
|
|
if (iteratorTypeName != targetIteratorTypeName)
|
|
continue;
|
|
// Search lhs/rhs map results for 'targetExpr'.
|
|
auto targetExpr = getAffineDimExpr(it.index(), context);
|
|
int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
|
|
int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
|
|
if (lhsDim >= 0 && rhsDim >= 0)
|
|
dimMap.push_back({lhsDim, rhsDim});
|
|
}
|
|
return dimMap;
|
|
}
|
|
|
|
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
|
|
SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
|
|
return getDimMap(indexingMaps, iterator_types(),
|
|
getReductionIteratorTypeName(), getContext());
|
|
}
|
|
|
|
std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
|
|
SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
|
|
return getDimMap(indexingMaps, iterator_types(),
|
|
getParallelIteratorTypeName(), getContext());
|
|
}
|
|
|
|
SmallVector<AffineMap, 4> ContractionOp::getIndexingMaps() {
|
|
SmallVector<AffineMap, 4> res;
|
|
auto mapAttrs = indexing_maps().getValue();
|
|
res.reserve(mapAttrs.size());
|
|
for (auto mapAttr : mapAttrs)
|
|
res.push_back(mapAttr.cast<AffineMapAttr>().getValue());
|
|
return res;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractElementOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Type inferExtractElementOpResultType(VectorType vectorType,
|
|
ArrayAttr position) {
|
|
if (static_cast<int64_t>(position.size()) == vectorType.getRank())
|
|
return vectorType.getElementType();
|
|
return VectorType::get(vectorType.getShape().drop_front(position.size()),
|
|
vectorType.getElementType());
|
|
}
|
|
|
|
void ExtractElementOp::build(Builder *builder, OperationState &result,
|
|
Value *source, ArrayRef<int32_t> position) {
|
|
result.addOperands(source);
|
|
auto positionAttr = builder->getI32ArrayAttr(position);
|
|
result.addTypes(inferExtractElementOpResultType(
|
|
source->getType().cast<VectorType>(), positionAttr));
|
|
result.addAttribute(getPositionAttrName(), positionAttr);
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, ExtractElementOp op) {
|
|
p << op.getOperationName() << " " << *op.vector() << op.position();
|
|
p.printOptionalAttrDict(op.getAttrs(), {"position"});
|
|
p << " : " << op.vector()->getType();
|
|
}
|
|
|
|
static ParseResult parseExtractElementOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
llvm::SMLoc attributeLoc, typeLoc;
|
|
SmallVector<NamedAttribute, 4> attrs;
|
|
OpAsmParser::OperandType vector;
|
|
Type type;
|
|
Attribute attr;
|
|
if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) ||
|
|
parser.parseAttribute(attr, "position", attrs) ||
|
|
parser.parseOptionalAttrDict(attrs) ||
|
|
parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type))
|
|
return failure();
|
|
|
|
auto vectorType = type.dyn_cast<VectorType>();
|
|
if (!vectorType)
|
|
return parser.emitError(typeLoc, "expected vector type");
|
|
|
|
auto positionAttr = attr.dyn_cast<ArrayAttr>();
|
|
if (!positionAttr ||
|
|
static_cast<int64_t>(positionAttr.size()) > vectorType.getRank())
|
|
return parser.emitError(
|
|
attributeLoc,
|
|
"expected position attribute of rank smaller than vector rank");
|
|
|
|
Type resType = inferExtractElementOpResultType(vectorType, positionAttr);
|
|
result.attributes = attrs;
|
|
return failure(parser.resolveOperand(vector, type, result.operands) ||
|
|
parser.addTypeToList(resType, result.types));
|
|
}
|
|
|
|
static LogicalResult verify(ExtractElementOp op) {
|
|
auto positionAttr = op.position().getValue();
|
|
if (positionAttr.empty())
|
|
return op.emitOpError("expected non-empty position attribute");
|
|
if (positionAttr.size() > static_cast<unsigned>(op.getVectorType().getRank()))
|
|
return op.emitOpError(
|
|
"expected position attribute of rank smaller than vector rank");
|
|
for (auto en : llvm::enumerate(positionAttr)) {
|
|
auto attr = en.value().dyn_cast<IntegerAttr>();
|
|
if (!attr || attr.getInt() < 0 ||
|
|
attr.getInt() > op.getVectorType().getDimSize(en.index()))
|
|
return op.emitOpError("expected position attribute #")
|
|
<< (en.index() + 1)
|
|
<< " to be a non-negative integer smaller than the corresponding "
|
|
"vector dimension";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BroadcastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void print(OpAsmPrinter &p, BroadcastOp op) {
|
|
p << op.getOperationName() << " " << *op.source();
|
|
p << " : " << op.getSourceType();
|
|
p << " to " << op.getVectorType();
|
|
}
|
|
|
|
static LogicalResult verify(BroadcastOp op) {
|
|
VectorType srcVectorType = op.getSourceType().dyn_cast<VectorType>();
|
|
VectorType dstVectorType = op.getVectorType();
|
|
// Scalar to vector broadcast is always valid. A vector
|
|
// to vector broadcast needs some additional checking.
|
|
if (srcVectorType) {
|
|
const int64_t srcRank = srcVectorType.getRank();
|
|
const int64_t dstRank = dstVectorType.getRank();
|
|
// TODO(ajcbik): implement proper rank testing for broadcast;
|
|
// this is just a temporary placeholder check.
|
|
if (srcRank > dstRank) {
|
|
return op.emitOpError("source rank higher than destination rank");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static ParseResult parseBroadcastOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
OpAsmParser::OperandType source;
|
|
Type sourceType;
|
|
VectorType vectorType;
|
|
return failure(parser.parseOperand(source) ||
|
|
parser.parseColonType(sourceType) ||
|
|
parser.parseKeywordType("to", vectorType) ||
|
|
parser.resolveOperand(source, sourceType, result.operands) ||
|
|
parser.addTypeToList(vectorType, result.types));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertElementOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InsertElementOp::build(Builder *builder, OperationState &result,
|
|
Value *source, Value *dest,
|
|
ArrayRef<int32_t> position) {
|
|
result.addOperands({source, dest});
|
|
auto positionAttr = builder->getI32ArrayAttr(position);
|
|
result.addTypes(dest->getType());
|
|
result.addAttribute(getPositionAttrName(), positionAttr);
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, InsertElementOp op) {
|
|
p << op.getOperationName() << " " << *op.source() << ", " << *op.dest()
|
|
<< op.position();
|
|
p.printOptionalAttrDict(op.getAttrs(),
|
|
{InsertElementOp::getPositionAttrName()});
|
|
p << " : " << op.getSourceType();
|
|
p << " into " << op.getDestVectorType();
|
|
}
|
|
|
|
static ParseResult parseInsertElementOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
SmallVector<NamedAttribute, 4> attrs;
|
|
OpAsmParser::OperandType source, dest;
|
|
Type sourceType;
|
|
VectorType destType;
|
|
Attribute attr;
|
|
return failure(parser.parseOperand(source) || parser.parseComma() ||
|
|
parser.parseOperand(dest) ||
|
|
parser.parseAttribute(attr,
|
|
InsertElementOp::getPositionAttrName(),
|
|
result.attributes) ||
|
|
parser.parseOptionalAttrDict(attrs) ||
|
|
parser.parseColonType(sourceType) ||
|
|
parser.parseKeywordType("into", destType) ||
|
|
parser.resolveOperand(source, sourceType, result.operands) ||
|
|
parser.resolveOperand(dest, destType, result.operands) ||
|
|
parser.addTypeToList(destType, result.types));
|
|
}
|
|
|
|
static LogicalResult verify(InsertElementOp op) {
|
|
auto positionAttr = op.position().getValue();
|
|
if (positionAttr.empty())
|
|
return op.emitOpError("expected non-empty position attribute");
|
|
auto destVectorType = op.getDestVectorType();
|
|
if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
|
|
return op.emitOpError(
|
|
"expected position attribute of rank smaller than dest vector rank");
|
|
auto srcVectorType = op.getSourceType().dyn_cast<VectorType>();
|
|
if (srcVectorType &&
|
|
(static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
|
|
static_cast<unsigned>(destVectorType.getRank())))
|
|
return op.emitOpError("expected position attribute rank + source rank to "
|
|
"match dest vector rank");
|
|
else if (!srcVectorType && (positionAttr.size() !=
|
|
static_cast<unsigned>(destVectorType.getRank())))
|
|
return op.emitOpError(
|
|
"expected position attribute rank to match the dest vector rank");
|
|
for (auto en : llvm::enumerate(positionAttr)) {
|
|
auto attr = en.value().dyn_cast<IntegerAttr>();
|
|
if (!attr || attr.getInt() < 0 ||
|
|
attr.getInt() > destVectorType.getDimSize(en.index()))
|
|
return op.emitOpError("expected position attribute #")
|
|
<< (en.index() + 1)
|
|
<< " to be a non-negative integer smaller than the corresponding "
|
|
"dest vector dimension";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertStridedSliceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InsertStridedSliceOp::build(Builder *builder, OperationState &result,
|
|
Value *source, Value *dest,
|
|
ArrayRef<int64_t> offsets,
|
|
ArrayRef<int64_t> strides) {
|
|
result.addOperands({source, dest});
|
|
auto offsetsAttr = builder->getI64ArrayAttr(offsets);
|
|
auto stridesAttr = builder->getI64ArrayAttr(strides);
|
|
result.addTypes(dest->getType());
|
|
result.addAttribute(getOffsetsAttrName(), offsetsAttr);
|
|
result.addAttribute(getStridesAttrName(), stridesAttr);
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, InsertStridedSliceOp op) {
|
|
p << op.getOperationName() << " " << *op.source() << ", " << *op.dest()
|
|
<< " ";
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
p << " : " << op.getSourceVectorType() << " into " << op.getDestVectorType();
|
|
}
|
|
|
|
static ParseResult parseInsertStridedSliceOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
OpAsmParser::OperandType source, dest;
|
|
VectorType sourceVectorType, destVectorType;
|
|
return failure(
|
|
parser.parseOperand(source) || parser.parseComma() ||
|
|
parser.parseOperand(dest) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(sourceVectorType) ||
|
|
parser.parseKeywordType("into", destVectorType) ||
|
|
parser.resolveOperand(source, sourceVectorType, result.operands) ||
|
|
parser.resolveOperand(dest, destVectorType, result.operands) ||
|
|
parser.addTypeToList(destVectorType, result.types));
|
|
}
|
|
|
|
// TODO(ntv) Should be moved to Tablegen Confined attributes.
|
|
template <typename OpType>
|
|
LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, ArrayAttr arrayAttr,
|
|
ArrayRef<int64_t> shape,
|
|
StringRef attrName) {
|
|
if (arrayAttr.size() > shape.size())
|
|
return op.emitOpError("expected ")
|
|
<< attrName << " attribute of rank smaller than vector rank";
|
|
return success();
|
|
}
|
|
|
|
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
|
|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
|
|
// Otherwise, the admissible interval is [min, max].
|
|
template <typename OpType>
|
|
LogicalResult isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr,
|
|
int64_t min, int64_t max,
|
|
StringRef attrName,
|
|
bool halfOpen = true) {
|
|
for (auto attr : arrayAttr) {
|
|
auto val = attr.cast<IntegerAttr>().getInt();
|
|
auto upper = max;
|
|
if (!halfOpen)
|
|
upper += 1;
|
|
if (val < min || val >= upper)
|
|
return op.emitOpError("expected ") << attrName << " to be confined to ["
|
|
<< min << ", " << upper << ")";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
|
|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
|
|
// Otherwise, the admissible interval is [min, max].
|
|
template <typename OpType>
|
|
LogicalResult
|
|
isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
|
|
ArrayRef<int64_t> shape, StringRef attrName,
|
|
bool halfOpen = true, int64_t min = 0) {
|
|
assert(arrayAttr.size() <= shape.size());
|
|
unsigned index = 0;
|
|
for (auto it : llvm::zip(arrayAttr, shape)) {
|
|
auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
|
|
auto max = std::get<1>(it);
|
|
if (!halfOpen)
|
|
max += 1;
|
|
if (val < min || val >= max)
|
|
return op.emitOpError("expected ")
|
|
<< attrName << " dimension " << index << " to be confined to ["
|
|
<< min << ", " << max << ")";
|
|
++index;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// Returns true if all integers in `arrayAttr` are in the interval [min, max}.
|
|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
|
|
// Otherwise, the admissible interval is [min, max].
|
|
template <typename OpType>
|
|
LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
|
|
OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
|
|
ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
|
|
bool halfOpen = true, int64_t min = 1) {
|
|
assert(arrayAttr1.size() <= shape.size());
|
|
assert(arrayAttr2.size() <= shape.size());
|
|
unsigned index = 0;
|
|
for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
|
|
auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
|
|
auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
|
|
auto max = std::get<2>(it);
|
|
if (!halfOpen)
|
|
max += 1;
|
|
if (val1 + val2 < 0 || val1 + val2 >= max)
|
|
return op.emitOpError("expected sum(")
|
|
<< attrName1 << ", " << attrName2 << ") dimension " << index
|
|
<< " to be confined to [" << min << ", " << max << ")";
|
|
++index;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
|
|
MLIRContext *context) {
|
|
auto attrs = functional::map(
|
|
[context](int64_t v) -> Attribute {
|
|
return IntegerAttr::get(IntegerType::get(64, context), APInt(64, v));
|
|
},
|
|
values);
|
|
return ArrayAttr::get(attrs, context);
|
|
}
|
|
|
|
static LogicalResult verify(InsertStridedSliceOp op) {
|
|
auto sourceVectorType = op.getSourceVectorType();
|
|
auto destVectorType = op.getDestVectorType();
|
|
auto offsets = op.offsets();
|
|
auto strides = op.strides();
|
|
if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
|
|
return op.emitOpError(
|
|
"expected offsets of same size as destination vector rank");
|
|
if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
|
|
return op.emitOpError(
|
|
"expected strides of same size as source vector rank");
|
|
if (sourceVectorType.getRank() > destVectorType.getRank())
|
|
return op.emitOpError(
|
|
"expected source rank to be smaller than destination rank");
|
|
|
|
auto sourceShape = sourceVectorType.getShape();
|
|
auto destShape = destVectorType.getShape();
|
|
SmallVector<int64_t, 4> sourceShapeAsDestShape(
|
|
destShape.size() - sourceShape.size(), 0);
|
|
sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
|
|
auto offName = InsertStridedSliceOp::getOffsetsAttrName();
|
|
auto stridesName = InsertStridedSliceOp::getStridesAttrName();
|
|
if (failed(
|
|
isIntegerArrayAttrConfinedToShape(op, offsets, destShape, offName)) ||
|
|
failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
|
|
/*halfOpen=*/false)) ||
|
|
failed(isSumOfIntegerArrayAttrConfinedToShape(
|
|
op, offsets,
|
|
makeI64ArrayAttr(sourceShapeAsDestShape, op.getContext()), destShape,
|
|
offName, "source vector shape",
|
|
/*halfOpen=*/false, /*min=*/1)))
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OuterProductOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void print(OpAsmPrinter &p, OuterProductOp op) {
|
|
p << op.getOperationName() << " " << *op.lhs() << ", " << *op.rhs();
|
|
if (llvm::size(op.acc()) > 0)
|
|
p << ", " << **op.acc().begin();
|
|
p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType();
|
|
}
|
|
|
|
static ParseResult parseOuterProductOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
|
|
Type tLHS, tRHS;
|
|
if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) ||
|
|
parser.parseComma() || parser.parseType(tRHS))
|
|
return failure();
|
|
if (operandsInfo.size() < 2)
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected at least 2 operands");
|
|
VectorType vLHS = tLHS.dyn_cast<VectorType>();
|
|
VectorType vRHS = tRHS.dyn_cast<VectorType>();
|
|
if (!vLHS || !vRHS)
|
|
return parser.emitError(parser.getNameLoc(), "expected 2 vector types");
|
|
VectorType resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
|
|
vLHS.getElementType());
|
|
return failure(
|
|
parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
|
|
parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
|
|
(operandsInfo.size() > 2 &&
|
|
parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
|
|
parser.addTypeToList(resType, result.types));
|
|
}
|
|
|
|
static LogicalResult verify(OuterProductOp op) {
|
|
VectorType vLHS = op.getOperandVectorTypeLHS(),
|
|
vRHS = op.getOperandVectorTypeRHS(),
|
|
vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType();
|
|
if (vLHS.getRank() != 1)
|
|
return op.emitOpError("expected 1-d vector for operand #1");
|
|
if (vRHS.getRank() != 1)
|
|
return op.emitOpError("expected 1-d vector for operand #2");
|
|
if (vRES.getRank() != 2)
|
|
return op.emitOpError("expected 2-d vector result");
|
|
if (vLHS.getDimSize(0) != vRES.getDimSize(0))
|
|
return op.emitOpError("expected #1 operand dim to match result dim #1");
|
|
if (vRHS.getDimSize(0) != vRES.getDimSize(1))
|
|
return op.emitOpError("expected #2 operand dim to match result dim #2");
|
|
if (vACC && vACC != vRES)
|
|
return op.emitOpError("expected operand #3 of same type as result type");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StridedSliceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Inference works as follows:
|
|
// 1. Add 'sizes' from prefix of dims in 'offsets'.
|
|
// 2. Add sizes from 'vectorType' for remaining dims.
|
|
static Type inferStridedSliceOpResultType(VectorType vectorType,
|
|
ArrayAttr offsets, ArrayAttr sizes,
|
|
ArrayAttr strides) {
|
|
assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
|
|
SmallVector<int64_t, 4> shape;
|
|
shape.reserve(vectorType.getRank());
|
|
unsigned idx = 0;
|
|
for (unsigned e = offsets.size(); idx < e; ++idx)
|
|
shape.push_back(sizes.getValue()[idx].cast<IntegerAttr>().getInt());
|
|
for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
|
|
shape.push_back(vectorType.getShape()[idx]);
|
|
|
|
return VectorType::get(shape, vectorType.getElementType());
|
|
}
|
|
|
|
void StridedSliceOp::build(Builder *builder, OperationState &result,
|
|
Value *source, ArrayRef<int64_t> offsets,
|
|
ArrayRef<int64_t> sizes, ArrayRef<int64_t> strides) {
|
|
result.addOperands(source);
|
|
auto offsetsAttr = builder->getI64ArrayAttr(offsets);
|
|
auto sizesAttr = builder->getI64ArrayAttr(sizes);
|
|
auto stridesAttr = builder->getI64ArrayAttr(strides);
|
|
result.addTypes(
|
|
inferStridedSliceOpResultType(source->getType().cast<VectorType>(),
|
|
offsetsAttr, sizesAttr, stridesAttr));
|
|
result.addAttribute(getOffsetsAttrName(), offsetsAttr);
|
|
result.addAttribute(getSizesAttrName(), sizesAttr);
|
|
result.addAttribute(getStridesAttrName(), stridesAttr);
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, StridedSliceOp op) {
|
|
p << op.getOperationName() << " " << *op.vector();
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
p << " : " << op.vector()->getType() << " to " << op.getResult()->getType();
|
|
}
|
|
|
|
static ParseResult parseStridedSliceOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
llvm::SMLoc attributeLoc, typeLoc;
|
|
OpAsmParser::OperandType vector;
|
|
VectorType vectorType, resultVectorType;
|
|
return failure(parser.parseOperand(vector) ||
|
|
parser.getCurrentLocation(&attributeLoc) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.getCurrentLocation(&typeLoc) ||
|
|
parser.parseColonType(vectorType) ||
|
|
parser.parseKeywordType("to", resultVectorType) ||
|
|
parser.resolveOperand(vector, vectorType, result.operands) ||
|
|
parser.addTypeToList(resultVectorType, result.types));
|
|
}
|
|
|
|
static LogicalResult verify(StridedSliceOp op) {
|
|
auto type = op.getVectorType();
|
|
auto offsets = op.offsets();
|
|
auto sizes = op.sizes();
|
|
auto strides = op.strides();
|
|
if (offsets.size() != sizes.size() || offsets.size() != strides.size()) {
|
|
op.emitOpError(
|
|
"expected offsets, sizes and strides attributes of same size");
|
|
return failure();
|
|
}
|
|
|
|
auto shape = type.getShape();
|
|
auto offName = StridedSliceOp::getOffsetsAttrName();
|
|
auto sizesName = StridedSliceOp::getSizesAttrName();
|
|
auto stridesName = StridedSliceOp::getStridesAttrName();
|
|
if (failed(isIntegerArrayAttrSmallerThanShape(op, offsets, shape, offName)) ||
|
|
failed(isIntegerArrayAttrSmallerThanShape(op, sizes, shape, sizesName)) ||
|
|
failed(isIntegerArrayAttrSmallerThanShape(op, strides, shape,
|
|
stridesName)) ||
|
|
failed(isIntegerArrayAttrConfinedToShape(op, offsets, shape, offName)) ||
|
|
failed(isIntegerArrayAttrConfinedToShape(op, sizes, shape, sizesName,
|
|
/*halfOpen=*/false,
|
|
/*min=*/1)) ||
|
|
failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
|
|
/*halfOpen=*/false)) ||
|
|
failed(isSumOfIntegerArrayAttrConfinedToShape(op, offsets, sizes, shape,
|
|
offName, sizesName,
|
|
/*halfOpen=*/false)))
|
|
return failure();
|
|
|
|
auto resultType = inferStridedSliceOpResultType(
|
|
op.getVectorType(), op.offsets(), op.sizes(), op.strides());
|
|
if (op.getResult()->getType() != resultType) {
|
|
op.emitOpError("expected result type to be ") << resultType;
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferReadOp
|
|
//===----------------------------------------------------------------------===//
|
|
template <typename EmitFun>
|
|
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
|
|
EmitFun emitOpError) {
|
|
SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
|
|
for (auto expr : permutationMap.getResults()) {
|
|
auto dim = expr.dyn_cast<AffineDimExpr>();
|
|
auto zero = expr.dyn_cast<AffineConstantExpr>();
|
|
if (zero) {
|
|
if (zero.getValue() != 0) {
|
|
return emitOpError(
|
|
"requires a projected permutation_map (at most one dim or the zero "
|
|
"constant can appear in each result)");
|
|
}
|
|
continue;
|
|
}
|
|
if (!dim) {
|
|
return emitOpError("requires a projected permutation_map (at most one "
|
|
"dim or the zero constant can appear in each result)");
|
|
}
|
|
if (seen[dim.getPosition()]) {
|
|
return emitOpError(
|
|
"requires a permutation_map that is a permutation (found one dim "
|
|
"used more than once)");
|
|
}
|
|
seen[dim.getPosition()] = true;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, TransferReadOp op) {
|
|
p << op.getOperationName() << " ";
|
|
p.printOperand(op.memref());
|
|
p << "[";
|
|
p.printOperands(op.indices());
|
|
p << "], ";
|
|
p.printOperand(op.padding());
|
|
p << " ";
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
p << " : " << op.getMemRefType();
|
|
p << ", " << op.getVectorType();
|
|
}
|
|
|
|
ParseResult parseTransferReadOp(OpAsmParser &parser, OperationState &result) {
|
|
llvm::SMLoc typesLoc;
|
|
OpAsmParser::OperandType memrefInfo;
|
|
SmallVector<OpAsmParser::OperandType, 8> indexInfo;
|
|
OpAsmParser::OperandType paddingInfo;
|
|
SmallVector<Type, 2> types;
|
|
// Parsing with support for optional paddingValue.
|
|
if (parser.parseOperand(memrefInfo) ||
|
|
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
|
|
parser.parseComma() || parser.parseOperand(paddingInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
|
|
return failure();
|
|
if (types.size() != 2)
|
|
return parser.emitError(typesLoc, "two types required");
|
|
auto indexType = parser.getBuilder().getIndexType();
|
|
MemRefType memRefType = types[0].dyn_cast<MemRefType>();
|
|
if (!memRefType)
|
|
return parser.emitError(typesLoc, "memref type required"), failure();
|
|
Type vectorType = types[1];
|
|
return failure(
|
|
parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
|
|
parser.resolveOperands(indexInfo, indexType, result.operands) ||
|
|
parser.resolveOperand(paddingInfo, memRefType.getElementType(),
|
|
result.operands) ||
|
|
parser.addTypeToList(vectorType, result.types));
|
|
}
|
|
|
|
static LogicalResult verify(TransferReadOp op) {
|
|
// Consistency of elemental types in memref and vector.
|
|
MemRefType memrefType = op.getMemRefType();
|
|
VectorType vectorType = op.getVectorType();
|
|
if (memrefType.getElementType() != vectorType.getElementType())
|
|
return op.emitOpError(
|
|
"requires memref and vector types of the same elemental type");
|
|
auto elementalType = op.padding()->getType();
|
|
if (!VectorType::isValidElementType(elementalType))
|
|
return op.emitOpError("requires valid padding vector elemental type");
|
|
if (elementalType != vectorType.getElementType())
|
|
return op.emitOpError(
|
|
"requires formal padding and vector of the same elemental type");
|
|
if (llvm::size(op.indices()) != memrefType.getRank())
|
|
return op.emitOpError("requires ") << memrefType.getRank() << " indices";
|
|
auto permutationMap = op.permutation_map();
|
|
if (permutationMap.getNumSymbols() != 0)
|
|
return op.emitOpError("requires permutation_map without symbols");
|
|
if (permutationMap.getNumInputs() != memrefType.getRank())
|
|
return op.emitOpError("requires a permutation_map with input dims of the "
|
|
"same rank as the memref type");
|
|
if (permutationMap.getNumResults() != vectorType.getRank())
|
|
return op.emitOpError("requires a permutation_map with result dims of the "
|
|
"same rank as the vector type");
|
|
return verifyPermutationMap(permutationMap,
|
|
[&op](Twine t) { return op.emitOpError(t); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TransferWriteOp
|
|
//===----------------------------------------------------------------------===//
|
|
static void print(OpAsmPrinter &p, TransferWriteOp op) {
|
|
p << op.getOperationName() << " " << *op.vector() << ", " << *op.memref();
|
|
p << "[";
|
|
p.printOperands(op.indices());
|
|
p << "]";
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
p << " : ";
|
|
p.printType(op.getVectorType());
|
|
p << ", ";
|
|
p.printType(op.getMemRefType());
|
|
}
|
|
|
|
ParseResult parseTransferWriteOp(OpAsmParser &parser, OperationState &result) {
|
|
llvm::SMLoc typesLoc;
|
|
OpAsmParser::OperandType storeValueInfo;
|
|
OpAsmParser::OperandType memRefInfo;
|
|
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
|
|
SmallVector<Type, 2> types;
|
|
if (parser.parseOperand(storeValueInfo) || parser.parseComma() ||
|
|
parser.parseOperand(memRefInfo) ||
|
|
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
|
|
return failure();
|
|
if (types.size() != 2)
|
|
return parser.emitError(typesLoc, "two types required");
|
|
auto indexType = parser.getBuilder().getIndexType();
|
|
Type vectorType = types[0], memRefType = types[1];
|
|
return failure(
|
|
parser.resolveOperand(storeValueInfo, vectorType, result.operands) ||
|
|
parser.resolveOperand(memRefInfo, memRefType, result.operands) ||
|
|
parser.resolveOperands(indexInfo, indexType, result.operands));
|
|
}
|
|
|
|
static LogicalResult verify(TransferWriteOp op) {
|
|
// Consistency of elemental types in memref and vector.
|
|
MemRefType memrefType = op.getMemRefType();
|
|
VectorType vectorType = op.getVectorType();
|
|
if (memrefType.getElementType() != vectorType.getElementType())
|
|
return op.emitOpError(
|
|
"requires memref and vector types of the same elemental type");
|
|
if (llvm::size(op.indices()) != memrefType.getRank())
|
|
return op.emitOpError("requires ") << memrefType.getRank() << " indices";
|
|
|
|
// Consistency of AffineMap attribute.
|
|
auto permutationMap = op.permutation_map();
|
|
if (permutationMap.getNumSymbols() != 0)
|
|
return op.emitOpError("requires a symbol-less permutation_map");
|
|
if (permutationMap.getNumInputs() != memrefType.getRank())
|
|
return op.emitOpError("requires a permutation_map with input dims of the "
|
|
"same rank as the memref type: ")
|
|
<< permutationMap.getNumInputs() << " vs " << memrefType;
|
|
if (permutationMap.getNumResults() != vectorType.getRank())
|
|
return op.emitOpError("requires a permutation_map with result dims of the "
|
|
"same rank as the vector type.")
|
|
<< permutationMap.getNumResults() << " vs " << vectorType;
|
|
return verifyPermutationMap(permutationMap,
|
|
[&op](Twine t) { return op.emitOpError(t); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TypeCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static MemRefType inferVectorTypeCastResultType(MemRefType t) {
|
|
return MemRefType::get({}, VectorType::get(t.getShape(), t.getElementType()));
|
|
}
|
|
|
|
void TypeCastOp::build(Builder *builder, OperationState &result,
|
|
Value *source) {
|
|
result.addOperands(source);
|
|
result.addTypes(
|
|
inferVectorTypeCastResultType(source->getType().cast<MemRefType>()));
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, TypeCastOp &op) {
|
|
auto type = op.getOperand()->getType().cast<MemRefType>();
|
|
p << op.getOperationName() << ' ' << *op.memref() << " : " << type << " to "
|
|
<< inferVectorTypeCastResultType(type);
|
|
}
|
|
|
|
static LogicalResult verify(TypeCastOp &op) {
|
|
auto resultType = inferVectorTypeCastResultType(op.getMemRefType());
|
|
if (op.getResultMemRefType() != resultType)
|
|
return op.emitOpError("expects result type to be: ") << resultType;
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IndexTupleOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParseResult parseIndexTupleOp(OpAsmParser &parser, OperationState &result) {
|
|
auto indexType = parser.getBuilder().getIndexType();
|
|
Type resultType;
|
|
SmallVector<OpAsmParser::OperandType, 4> operandInfo;
|
|
return failure(
|
|
parser.parseOperandList(operandInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseColonType(resultType) ||
|
|
parser.resolveOperands(operandInfo, indexType, result.operands) ||
|
|
parser.addTypeToList(resultType, result.types));
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, IndexTupleOp &op) {
|
|
p << op.getOperationName() << ' ';
|
|
p.printOperands(op.operands());
|
|
p << " : " << op.getResult()->getType();
|
|
}
|
|
|
|
static LogicalResult verify(IndexTupleOp &op) {
|
|
for (auto operand : op.getOperands())
|
|
if (!operand->getType().isa<IndexType>())
|
|
return op.emitOpError("all operands must be of index type");
|
|
return success();
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace vector {
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
|
|
|
|
} // namespace vector
|
|
} // namespace mlir
|