Files
llvm/libc/src/__support/integer_to_string.h
Simon Tatham c06d0ff806 [libc] Optimize BigInt→decimal in IntegerToString (#123580)
When IntegerToString converts a BigInt into decimal, it determines each
digit by computing `n % 10` and then resets n to `n / 10`, until the
number becomes zero. The div and mod operations are done using
`BigInt::divide_unsigned`, which uses the simplest possible bit-by-bit
iteration, which is a slow algorithm in general, but especially so if
the divisor 10 must first be promoted to a BigInt the same size as the
dividend. The effect is to make each division take quadratic time, so
that the overall decimal conversion is cubic – and the division is
quadratic in the number of _bits_, so the constant of proportionality is
also large.

In this patch I've provided custom code to extract decimal digits much
faster, based on knowing that the divisor is always 10, and processing a
word at a time. So each digit extraction is linear-time with a much
smaller constant of proportionality.

Full comments are in the code. The general strategy is to do the
reduction mod 10 first to determine the output digit; then subtract it
off, so that what's left is guaranteed to be an exact multiple of 10;
and finally divide by 10 using modular-arithmetic techniques rather than
reciprocal-approximation-based ordinary integer division.

I didn't find any existing tests of IntegerToString on a BigInt, so I've
added one.
2025-02-04 08:57:41 +00:00

498 lines
20 KiB
C++

//===-- Utilities to convert integral values to string ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Converts an integer to a string.
//
// By default, the string is written as decimal to an internal buffer and
// accessed via the 'view' method.
//
// IntegerToString<int> buffer(42);
// cpp::string_view view = buffer.view();
//
// The buffer is allocated on the stack and its size is so that the conversion
// always succeeds.
//
// It is also possible to write the data to a preallocated buffer, but this may
// fail.
//
// char buffer[8];
// if (auto maybe_view = IntegerToString<int>::write_to_span(buffer, 42)) {
// cpp::string_view view = *maybe_view;
// }
//
// The first template parameter is the type of the integer.
// The second template parameter defines how the integer is formatted.
// Available default are 'radix::Bin', 'radix::Oct', 'radix::Dec' and
// 'radix::Hex'.
//
// For 'radix::Bin', 'radix::Oct' and 'radix::Hex' the value is always
// interpreted as a positive type but 'radix::Dec' will honor negative values.
// e.g.,
//
// IntegerToString<int8_t>(-1) // "-1"
// IntegerToString<int8_t, radix::Dec>(-1) // "-1"
// IntegerToString<int8_t, radix::Bin>(-1) // "11111111"
// IntegerToString<int8_t, radix::Oct>(-1) // "377"
// IntegerToString<int8_t, radix::Hex>(-1) // "ff"
//
// Additionnally, the format can be changed by navigating the subtypes:
// - WithPrefix : Adds "0b", "0", "0x" for binary, octal and hexadecimal
// - WithWidth<XX> : Pad string to XX characters filling leading digits with 0
// - Uppercase : Use uppercase letters (only for HexString)
// - WithSign : Prepend '+' for positive values (only for DecString)
//
// Examples
// --------
// IntegerToString<int8_t, radix::Dec::WithWidth<2>::WithSign>(0) : "+00"
// IntegerToString<int8_t, radix::Dec::WithWidth<2>::WithSign>(-1) : "-01"
// IntegerToString<uint8_t, radix::Hex::WithPrefix::Uppercase>(255) : "0xFF"
// IntegerToString<uint8_t, radix::Hex::WithWidth<4>::Uppercase>(255) : "00FF"
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_INTEGER_TO_STRING_H
#define LLVM_LIBC_SRC___SUPPORT_INTEGER_TO_STRING_H
#include <stdint.h>
#include "src/__support/CPP/algorithm.h" // max
#include "src/__support/CPP/array.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/CPP/limits.h"
#include "src/__support/CPP/optional.h"
#include "src/__support/CPP/span.h"
#include "src/__support/CPP/string_view.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/big_int.h" // make_integral_or_big_int_unsigned_t
#include "src/__support/common.h"
#include "src/__support/ctype_utils.h"
#include "src/__support/macros/config.h"
namespace LIBC_NAMESPACE_DECL {
namespace details {
template <uint8_t base, bool prefix = false, bool force_sign = false,
bool is_uppercase = false, size_t min_digits = 1>
struct Fmt {
static constexpr uint8_t BASE = base;
static constexpr size_t MIN_DIGITS = min_digits;
static constexpr bool IS_UPPERCASE = is_uppercase;
static constexpr bool PREFIX = prefix;
static constexpr char FORCE_SIGN = force_sign;
using WithPrefix = Fmt<BASE, true, FORCE_SIGN, IS_UPPERCASE, MIN_DIGITS>;
using WithSign = Fmt<BASE, PREFIX, true, IS_UPPERCASE, MIN_DIGITS>;
using Uppercase = Fmt<BASE, PREFIX, FORCE_SIGN, true, MIN_DIGITS>;
template <size_t value>
using WithWidth = Fmt<BASE, PREFIX, FORCE_SIGN, IS_UPPERCASE, value>;
// Invariants
static constexpr uint8_t NUMERICAL_DIGITS = 10;
static constexpr uint8_t ALPHA_DIGITS = 26;
static constexpr uint8_t MAX_DIGIT = NUMERICAL_DIGITS + ALPHA_DIGITS;
static_assert(BASE > 1 && BASE <= MAX_DIGIT);
static_assert(!IS_UPPERCASE || BASE > 10, "Uppercase is only for radix > 10");
static_assert(!FORCE_SIGN || BASE == 10, "WithSign is only for radix == 10");
static_assert(!PREFIX || (BASE == 2 || BASE == 8 || BASE == 16),
"WithPrefix is only for radix == 2, 8 or 16");
};
// Move this to a separate header since it might be useful elsewhere.
template <bool forward> class StringBufferWriterImpl {
cpp::span<char> buffer;
size_t index = 0;
bool out_of_range = false;
LIBC_INLINE size_t location() const {
return forward ? index : buffer.size() - 1 - index;
}
public:
StringBufferWriterImpl(const StringBufferWriterImpl &) = delete;
StringBufferWriterImpl(cpp::span<char> buffer) : buffer(buffer) {}
LIBC_INLINE size_t size() const { return index; }
LIBC_INLINE size_t remainder_size() const { return buffer.size() - size(); }
LIBC_INLINE bool empty() const { return size() == 0; }
LIBC_INLINE bool full() const { return size() == buffer.size(); }
LIBC_INLINE bool ok() const { return !out_of_range; }
LIBC_INLINE StringBufferWriterImpl &push(char c) {
if (ok()) {
if (!full()) {
buffer[location()] = c;
++index;
} else {
out_of_range = true;
}
}
return *this;
}
LIBC_INLINE cpp::span<char> remainder_span() const {
return forward ? buffer.last(remainder_size())
: buffer.first(remainder_size());
}
LIBC_INLINE cpp::span<char> buffer_span() const {
return forward ? buffer.first(size()) : buffer.last(size());
}
LIBC_INLINE cpp::string_view buffer_view() const {
const auto s = buffer_span();
return {s.data(), s.size()};
}
};
using StringBufferWriter = StringBufferWriterImpl<true>;
using BackwardStringBufferWriter = StringBufferWriterImpl<false>;
} // namespace details
namespace radix {
using Bin = details::Fmt<2>;
using Oct = details::Fmt<8>;
using Dec = details::Fmt<10>;
using Hex = details::Fmt<16>;
template <size_t radix> using Custom = details::Fmt<radix>;
} // namespace radix
// Extract the low-order decimal digit from a value of integer type T. The
// returned value is the digit itself, from 0 to 9. The input value is passed
// by reference, and modified by dividing by 10, so that iterating this
// function extracts all the digits of the original number one at a time from
// low to high.
template <typename T>
LIBC_INLINE cpp::enable_if_t<cpp::is_integral_v<T>, uint8_t>
extract_decimal_digit(T &value) {
const uint8_t digit(static_cast<uint8_t>(value % 10));
// For built-in integer types, we assume that an adequately fast division is
// available. If hardware division isn't implemented, then with a divisor
// known at compile time the compiler might be able to generate an optimized
// sequence instead.
value /= 10;
return digit;
}
// A specialization of extract_decimal_digit for the BigInt type in big_int.h,
// avoiding the use of general-purpose BigInt division which is very slow.
template <typename T>
LIBC_INLINE cpp::enable_if_t<is_big_int_v<T>, uint8_t>
extract_decimal_digit(T &value) {
// There are two essential ways you can turn n into (n/10,n%10). One is
// ordinary integer division. The other is a modular-arithmetic approach in
// which you first compute n%10 by bit twiddling, then subtract it off to get
// a value that is definitely a multiple of 10. Then you divide that by 10 in
// two steps: shift right to divide off a factor of 2, and then divide off a
// factor of 5 by multiplying by the modular inverse of 5 mod 2^BITS. (That
// last step only works if you know there's no remainder, which is why you
// had to subtract off the output digit first.)
//
// Either approach can be made to work in linear time. This code uses the
// modular-arithmetic technique, because the other approach either does a lot
// of integer divisions (requiring a fast hardware divider), or else uses a
// "multiply by an approximation to the reciprocal" technique which depends
// on careful error analysis which might go wrong in an untested edge case.
using Word = typename T::word_type;
// Find the remainder (value % 10). We do this by breaking up the input
// integer into chunks of size WORD_SIZE/2, so that the sum of them doesn't
// overflow a Word. Then we sum all the half-words times 6, except the bottom
// one, which is added to that sum without scaling.
//
// Why 6? Because you can imagine that the original number had the form
//
// halfwords[0] + K*halfwords[1] + K^2*halfwords[2] + ...
//
// where K = 2^(WORD_SIZE/2). Since WORD_SIZE is expected to be a multiple of
// 8, that makes WORD_SIZE/2 a multiple of 4, so that K is a power of 16. And
// all powers of 16 (larger than 1) are congruent to 6 mod 10, by induction:
// 16 itself is, and 6^2=36 is also congruent to 6.
Word acc_remainder = 0;
constexpr Word HALFWORD_BITS = T::WORD_SIZE / 2;
constexpr Word HALFWORD_MASK = ((Word(1) << HALFWORD_BITS) - 1);
// Sum both halves of all words except the low one.
for (size_t i = 1; i < T::WORD_COUNT; i++) {
acc_remainder += value.val[i] >> HALFWORD_BITS;
acc_remainder += value.val[i] & HALFWORD_MASK;
}
// Add the high half of the low word. Then we have everything that needs to
// be multiplied by 6, so do that.
acc_remainder += value.val[0] >> HALFWORD_BITS;
acc_remainder *= 6;
// Having multiplied it by 6, add the lowest half-word, and then reduce mod
// 10 by normal integer division to finish.
acc_remainder += value.val[0] & HALFWORD_MASK;
uint8_t digit = acc_remainder % 10;
// Now we have the output digit. Subtract it from the input value, and shift
// right to divide by 2.
value -= digit;
value >>= 1;
// Now all that's left is to multiply by the inverse of 5 mod 2^BITS. No
// matter what the value of BITS, the inverse of 5 has the very convenient
// form 0xCCCC...CCCD, with as many C hex digits in the middle as necessary.
//
// We could construct a second BigInt with all words 0xCCCCCCCCCCCCCCCC,
// increment the bottom word, and call a general-purpose multiply function.
// But we can do better, by taking advantage of the regularity: we can do
// this particular operation in linear time, whereas a general multiplier
// would take superlinear time (quadratic in small cases).
//
// To begin with, instead of computing n*0xCCCC...CCCD, we'll compute
// n*0xCCCC...CCCC and then add it to the original n. Then all the words of
// the multiplier have the same value 0xCCCCCCCCCCCCCCCC, which I'll just
// denote as C. If we also write t = 2^WORD_SIZE, and imagine (as an example)
// that the input number has three words x,y,z with x being the low word,
// then we're computing
//
// (x + y t + z t^2) * (C + C t + C t^2)
//
// = x C + y C t + z C t^2
// + x C t + y C t^2 + z C t^3
// + x C t^2 + y C t^3 + z C t^4
//
// but we're working mod t^3, so the high-order terms vanish and this becomes
//
// x C + y C t + z C t^2
// + x C t + y C t^2
// + x C t^2
//
// = x C + (x+y) C t + (x+y+z) C t^2
//
// So all you have to do is to work from the low word of the integer upwards,
// accumulating C times the sum of all the words you've seen so far to get
// x*C, (x+y)*C, (x+y+z)*C and so on. In each step you add another product to
// the accumulator, and add the accumulator to the corresponding word of the
// original number (so that we end up with value*CCCD, not just value*CCCC).
//
// If you do that literally, then your accumulator has to be three words
// wide, because the sum of words can overflow into a second word, and
// multiplying by C adds another word. But we can do slightly better by
// breaking each product word*C up into a bottom half and a top half. If we
// write x*C = xl + xh*t, and similarly for y and z, then our sum becomes
//
// (xl + xh t) + (yl + yh t) t + (zl + zh t) t^2
// + (xl + xh t) t + (yl + yh t) t^2
// + (xl + xh t) t^2
//
// and if you expand out again, collect terms, and discard t^3 terms, you get
//
// (xl)
// + (xl + xh + yl) t
// + (xl + xh + yl + yh + zl) t^2
//
// in which each coefficient is the sum of all the low words of the products
// up to _and including_ the current word, plus all the high words up to but
// _not_ including the current word. So now you only have to retain two words
// of sum instead of three.
//
// We do this entire procedure in a single in-place pass over the input
// number, reading each word to make its product with C and then adding the
// low word of the accumulator to it.
constexpr Word C = Word(-1) / 5 * 4; // calculate 0xCCCC as 4/5 of 0xFFFF
Word acc_lo = 0, acc_hi = 0; // accumulator of all the half-products so far
Word carry_bit, carry_word = 0;
for (size_t i = 0; i < T::WORD_COUNT; i++) {
// Make the two-word product of C with the current input word.
multiword::DoubleWide<Word> product = multiword::mul2(C, value.val[i]);
// Add the low half of the product to our accumulator, but not yet the high
// half.
acc_lo = add_with_carry<Word>(acc_lo, product[0], 0, carry_bit);
acc_hi += carry_bit;
// Now the accumulator contains exactly the value we need to add to the
// current input word. Add it, plus any carries from lower words, and make
// a new word of carry data to propagate into the next iteration.
value.val[i] = add_with_carry<Word>(value.val[i], carry_word, 0, carry_bit);
carry_word = acc_hi + carry_bit;
value.val[i] = add_with_carry<Word>(value.val[i], acc_lo, 0, carry_bit);
carry_word += carry_bit;
// Now add the high half of the current product to our accumulator.
acc_lo = add_with_carry<Word>(acc_lo, product[1], 0, carry_bit);
acc_hi += carry_bit;
}
return digit;
}
// See file header for documentation.
template <typename T, typename Fmt = radix::Dec> class IntegerToString {
static_assert(cpp::is_integral_v<T> || is_big_int_v<T>);
LIBC_INLINE static constexpr size_t compute_buffer_size() {
constexpr auto MAX_DIGITS = []() -> size_t {
// We size the string buffer for base 10 using an approximation algorithm:
//
// size = ceil(sizeof(T) * 5 / 2)
//
// If sizeof(T) is 1, then size is 3 (actually need 3)
// If sizeof(T) is 2, then size is 5 (actually need 5)
// If sizeof(T) is 4, then size is 10 (actually need 10)
// If sizeof(T) is 8, then size is 20 (actually need 20)
// If sizeof(T) is 16, then size is 40 (actually need 39)
//
// NOTE: The ceil operation is actually implemented as
// floor(((sizeof(T) * 5) + 1) / 2)
// where floor operation is just integer division.
//
// This estimation grows slightly faster than the actual value, but the
// overhead is small enough to tolerate.
if constexpr (Fmt::BASE == 10)
return ((sizeof(T) * 5) + 1) / 2;
// For other bases, we approximate by rounding down to the nearest power
// of two base, since the space needed is easy to calculate and it won't
// overestimate by too much.
constexpr auto FLOOR_LOG_2 = [](size_t num) -> size_t {
size_t i = 0;
for (; num > 1; num /= 2)
++i;
return i;
};
constexpr size_t BITS_PER_DIGIT = FLOOR_LOG_2(Fmt::BASE);
return ((sizeof(T) * 8 + (BITS_PER_DIGIT - 1)) / BITS_PER_DIGIT);
};
constexpr size_t DIGIT_SIZE = cpp::max(MAX_DIGITS(), Fmt::MIN_DIGITS);
constexpr size_t SIGN_SIZE = Fmt::BASE == 10 ? 1 : 0;
constexpr size_t PREFIX_SIZE = Fmt::PREFIX ? 2 : 0;
return DIGIT_SIZE + SIGN_SIZE + PREFIX_SIZE;
}
static constexpr size_t BUFFER_SIZE = compute_buffer_size();
static_assert(BUFFER_SIZE > 0);
// An internal stateless structure that handles the number formatting logic.
struct IntegerWriter {
static_assert(cpp::is_integral_v<T> || is_big_int_v<T>);
using UNSIGNED_T = make_integral_or_big_int_unsigned_t<T>;
LIBC_INLINE static char digit_char(uint8_t digit) {
const int result = internal::int_to_b36_char(digit);
return static_cast<char>(Fmt::IS_UPPERCASE ? internal::toupper(result)
: result);
}
LIBC_INLINE static void
write_unsigned_number(UNSIGNED_T value,
details::BackwardStringBufferWriter &sink) {
for (; sink.ok() && value != 0; value /= Fmt::BASE) {
const uint8_t digit(static_cast<uint8_t>(value % Fmt::BASE));
sink.push(digit_char(digit));
}
}
LIBC_INLINE static void
write_unsigned_number_dec(UNSIGNED_T value,
details::BackwardStringBufferWriter &sink) {
while (sink.ok() && value != 0) {
const uint8_t digit = extract_decimal_digit(value);
sink.push(digit_char(digit));
}
}
// Returns the absolute value of 'value' as 'UNSIGNED_T'.
LIBC_INLINE static UNSIGNED_T abs(T value) {
if (cpp::is_unsigned_v<T> || value >= 0)
return value; // already of the right sign.
// Signed integers are asymmetric (e.g., int8_t ∈ [-128, 127]).
// Thus negating the type's minimum value would overflow.
// From C++20 on, signed types are guaranteed to be represented as 2's
// complement. We take advantage of this representation and negate the
// value by using the exact same bit representation, e.g.,
// binary : 0b1000'0000
// int8_t : -128
// uint8_t: 128
// Note: the compiler can completely optimize out the two branches and
// replace them by a simple negate instruction.
// https://godbolt.org/z/hE7zahT9W
if (value == cpp::numeric_limits<T>::min()) {
return cpp::bit_cast<UNSIGNED_T>(value);
} else {
return -value; // legal and representable both as T and UNSIGNED_T.`
}
}
LIBC_INLINE static void write(T value,
details::BackwardStringBufferWriter &sink) {
if constexpr (Fmt::BASE == 10) {
write_unsigned_number_dec(abs(value), sink);
} else {
write_unsigned_number(static_cast<UNSIGNED_T>(value), sink);
}
// width
while (sink.ok() && sink.size() < Fmt::MIN_DIGITS)
sink.push('0');
// sign
if constexpr (Fmt::BASE == 10) {
if (value < 0)
sink.push('-');
else if (Fmt::FORCE_SIGN)
sink.push('+');
}
// prefix
if constexpr (Fmt::PREFIX) {
if constexpr (Fmt::BASE == 2) {
sink.push('b');
sink.push('0');
}
if constexpr (Fmt::BASE == 16) {
sink.push('x');
sink.push('0');
}
if constexpr (Fmt::BASE == 8) {
const cpp::string_view written = sink.buffer_view();
if (written.empty() || written.front() != '0')
sink.push('0');
}
}
}
};
cpp::array<char, BUFFER_SIZE> array;
size_t written = 0;
public:
IntegerToString(const IntegerToString &) = delete;
IntegerToString(T value) {
details::BackwardStringBufferWriter writer(array);
IntegerWriter::write(value, writer);
written = writer.size();
}
[[nodiscard]] LIBC_INLINE static cpp::optional<cpp::string_view>
format_to(cpp::span<char> buffer, T value) {
details::BackwardStringBufferWriter writer(buffer);
IntegerWriter::write(value, writer);
if (writer.ok())
return cpp::string_view(buffer.data() + buffer.size() - writer.size(),
writer.size());
return cpp::nullopt;
}
LIBC_INLINE static constexpr size_t buffer_size() { return BUFFER_SIZE; }
LIBC_INLINE size_t size() const { return written; }
LIBC_INLINE cpp::string_view view() && = delete;
LIBC_INLINE cpp::string_view view() const & {
return cpp::string_view(array.data() + array.size() - size(), size());
}
};
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_INTEGER_TO_STRING_H