mirror of
https://github.com/intel/llvm.git
synced 2026-01-20 10:58:11 +08:00
In trying to fix the leaks in the MachO lld codebase, we need to have a better model for file and atom ownership. Having the context own everything seems like the simplest model, so change all the passes to allocate File's on the context instead of owning files as a member. llvm-svn: 264004
581 lines
22 KiB
C++
581 lines
22 KiB
C++
//===- lib/ReaderWriter/MachO/CompactUnwindPass.cpp -------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file A pass to convert MachO's __compact_unwind sections into the final
|
|
/// __unwind_info format used during runtime. See
|
|
/// mach-o/compact_unwind_encoding.h for more details on the formats involved.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ArchHandler.h"
|
|
#include "File.h"
|
|
#include "MachONormalizedFileBinaryUtils.h"
|
|
#include "MachOPasses.h"
|
|
#include "lld/Core/DefinedAtom.h"
|
|
#include "lld/Core/File.h"
|
|
#include "lld/Core/LLVM.h"
|
|
#include "lld/Core/Reference.h"
|
|
#include "lld/Core/Simple.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Format.h"
|
|
|
|
#define DEBUG_TYPE "macho-compact-unwind"
|
|
|
|
namespace lld {
|
|
namespace mach_o {
|
|
|
|
namespace {
|
|
struct CompactUnwindEntry {
|
|
const Atom *rangeStart;
|
|
const Atom *personalityFunction;
|
|
const Atom *lsdaLocation;
|
|
const Atom *ehFrame;
|
|
|
|
uint32_t rangeLength;
|
|
|
|
// There are 3 types of compact unwind entry, distinguished by the encoding
|
|
// value: 0 indicates a function with no unwind info;
|
|
// _archHandler.dwarfCompactUnwindType() indicates that the entry defers to
|
|
// __eh_frame, and that the ehFrame entry will be valid; any other value is a
|
|
// real compact unwind entry -- personalityFunction will be set and
|
|
// lsdaLocation may be.
|
|
uint32_t encoding;
|
|
|
|
CompactUnwindEntry(const DefinedAtom *function)
|
|
: rangeStart(function), personalityFunction(nullptr),
|
|
lsdaLocation(nullptr), ehFrame(nullptr), rangeLength(function->size()),
|
|
encoding(0) {}
|
|
|
|
CompactUnwindEntry()
|
|
: rangeStart(nullptr), personalityFunction(nullptr),
|
|
lsdaLocation(nullptr), ehFrame(nullptr), rangeLength(0), encoding(0) {}
|
|
};
|
|
|
|
struct UnwindInfoPage {
|
|
ArrayRef<CompactUnwindEntry> entries;
|
|
};
|
|
}
|
|
|
|
class UnwindInfoAtom : public SimpleDefinedAtom {
|
|
public:
|
|
UnwindInfoAtom(ArchHandler &archHandler, const File &file, bool isBig,
|
|
std::vector<const Atom *> &personalities,
|
|
std::vector<uint32_t> &commonEncodings,
|
|
std::vector<UnwindInfoPage> &pages, uint32_t numLSDAs)
|
|
: SimpleDefinedAtom(file), _archHandler(archHandler),
|
|
_commonEncodingsOffset(7 * sizeof(uint32_t)),
|
|
_personalityArrayOffset(_commonEncodingsOffset +
|
|
commonEncodings.size() * sizeof(uint32_t)),
|
|
_topLevelIndexOffset(_personalityArrayOffset +
|
|
personalities.size() * sizeof(uint32_t)),
|
|
_lsdaIndexOffset(_topLevelIndexOffset +
|
|
3 * (pages.size() + 1) * sizeof(uint32_t)),
|
|
_firstPageOffset(_lsdaIndexOffset + 2 * numLSDAs * sizeof(uint32_t)),
|
|
_isBig(isBig) {
|
|
|
|
addHeader(commonEncodings.size(), personalities.size(), pages.size());
|
|
addCommonEncodings(commonEncodings);
|
|
addPersonalityFunctions(personalities);
|
|
addTopLevelIndexes(pages);
|
|
addLSDAIndexes(pages, numLSDAs);
|
|
addSecondLevelPages(pages);
|
|
}
|
|
|
|
ContentType contentType() const override {
|
|
return DefinedAtom::typeProcessedUnwindInfo;
|
|
}
|
|
|
|
Alignment alignment() const override { return 4; }
|
|
|
|
uint64_t size() const override { return _contents.size(); }
|
|
|
|
ContentPermissions permissions() const override {
|
|
return DefinedAtom::permR__;
|
|
}
|
|
|
|
ArrayRef<uint8_t> rawContent() const override { return _contents; }
|
|
|
|
void addHeader(uint32_t numCommon, uint32_t numPersonalities,
|
|
uint32_t numPages) {
|
|
using normalized::write32;
|
|
|
|
uint32_t headerSize = 7 * sizeof(uint32_t);
|
|
_contents.resize(headerSize);
|
|
|
|
uint8_t *headerEntries = _contents.data();
|
|
// version
|
|
write32(headerEntries, 1, _isBig);
|
|
// commonEncodingsArraySectionOffset
|
|
write32(headerEntries + sizeof(uint32_t), _commonEncodingsOffset, _isBig);
|
|
// commonEncodingsArrayCount
|
|
write32(headerEntries + 2 * sizeof(uint32_t), numCommon, _isBig);
|
|
// personalityArraySectionOffset
|
|
write32(headerEntries + 3 * sizeof(uint32_t), _personalityArrayOffset,
|
|
_isBig);
|
|
// personalityArrayCount
|
|
write32(headerEntries + 4 * sizeof(uint32_t), numPersonalities, _isBig);
|
|
// indexSectionOffset
|
|
write32(headerEntries + 5 * sizeof(uint32_t), _topLevelIndexOffset, _isBig);
|
|
// indexCount
|
|
write32(headerEntries + 6 * sizeof(uint32_t), numPages + 1, _isBig);
|
|
}
|
|
|
|
/// Add the list of common encodings to the section; this is simply an array
|
|
/// of uint32_t compact values. Size has already been specified in the header.
|
|
void addCommonEncodings(std::vector<uint32_t> &commonEncodings) {
|
|
using normalized::write32;
|
|
|
|
_contents.resize(_commonEncodingsOffset +
|
|
commonEncodings.size() * sizeof(uint32_t));
|
|
uint8_t *commonEncodingsArea =
|
|
reinterpret_cast<uint8_t *>(_contents.data() + _commonEncodingsOffset);
|
|
|
|
for (uint32_t encoding : commonEncodings) {
|
|
write32(commonEncodingsArea, encoding, _isBig);
|
|
commonEncodingsArea += sizeof(uint32_t);
|
|
}
|
|
}
|
|
|
|
void addPersonalityFunctions(std::vector<const Atom *> personalities) {
|
|
_contents.resize(_personalityArrayOffset +
|
|
personalities.size() * sizeof(uint32_t));
|
|
|
|
for (unsigned i = 0; i < personalities.size(); ++i)
|
|
addImageReferenceIndirect(_personalityArrayOffset + i * sizeof(uint32_t),
|
|
personalities[i]);
|
|
}
|
|
|
|
void addTopLevelIndexes(std::vector<UnwindInfoPage> &pages) {
|
|
using normalized::write32;
|
|
|
|
uint32_t numIndexes = pages.size() + 1;
|
|
_contents.resize(_topLevelIndexOffset + numIndexes * 3 * sizeof(uint32_t));
|
|
|
|
uint32_t pageLoc = _firstPageOffset;
|
|
|
|
// The most difficult job here is calculating the LSDAs; everything else
|
|
// follows fairly naturally, but we can't state where the first
|
|
uint8_t *indexData = &_contents[_topLevelIndexOffset];
|
|
uint32_t numLSDAs = 0;
|
|
for (unsigned i = 0; i < pages.size(); ++i) {
|
|
// functionOffset
|
|
addImageReference(_topLevelIndexOffset + 3 * i * sizeof(uint32_t),
|
|
pages[i].entries[0].rangeStart);
|
|
// secondLevelPagesSectionOffset
|
|
write32(indexData + (3 * i + 1) * sizeof(uint32_t), pageLoc, _isBig);
|
|
write32(indexData + (3 * i + 2) * sizeof(uint32_t),
|
|
_lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t), _isBig);
|
|
|
|
for (auto &entry : pages[i].entries)
|
|
if (entry.lsdaLocation)
|
|
++numLSDAs;
|
|
}
|
|
|
|
// Finally, write out the final sentinel index
|
|
auto &finalEntry = pages[pages.size() - 1].entries.back();
|
|
addImageReference(_topLevelIndexOffset +
|
|
3 * pages.size() * sizeof(uint32_t),
|
|
finalEntry.rangeStart, finalEntry.rangeLength);
|
|
// secondLevelPagesSectionOffset => 0
|
|
write32(indexData + (3 * pages.size() + 2) * sizeof(uint32_t),
|
|
_lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t), _isBig);
|
|
}
|
|
|
|
void addLSDAIndexes(std::vector<UnwindInfoPage> &pages, uint32_t numLSDAs) {
|
|
_contents.resize(_lsdaIndexOffset + numLSDAs * 2 * sizeof(uint32_t));
|
|
|
|
uint32_t curOffset = _lsdaIndexOffset;
|
|
for (auto &page : pages) {
|
|
for (auto &entry : page.entries) {
|
|
if (!entry.lsdaLocation)
|
|
continue;
|
|
|
|
addImageReference(curOffset, entry.rangeStart);
|
|
addImageReference(curOffset + sizeof(uint32_t), entry.lsdaLocation);
|
|
curOffset += 2 * sizeof(uint32_t);
|
|
}
|
|
}
|
|
}
|
|
|
|
void addSecondLevelPages(std::vector<UnwindInfoPage> &pages) {
|
|
for (auto &page : pages) {
|
|
addRegularSecondLevelPage(page);
|
|
}
|
|
}
|
|
|
|
void addRegularSecondLevelPage(const UnwindInfoPage &page) {
|
|
uint32_t curPageOffset = _contents.size();
|
|
const int16_t headerSize = sizeof(uint32_t) + 2 * sizeof(uint16_t);
|
|
uint32_t curPageSize =
|
|
headerSize + 2 * page.entries.size() * sizeof(uint32_t);
|
|
_contents.resize(curPageOffset + curPageSize);
|
|
|
|
using normalized::write32;
|
|
using normalized::write16;
|
|
// 2 => regular page
|
|
write32(&_contents[curPageOffset], 2, _isBig);
|
|
// offset of 1st entry
|
|
write16(&_contents[curPageOffset + 4], headerSize, _isBig);
|
|
write16(&_contents[curPageOffset + 6], page.entries.size(), _isBig);
|
|
|
|
uint32_t pagePos = curPageOffset + headerSize;
|
|
for (auto &entry : page.entries) {
|
|
addImageReference(pagePos, entry.rangeStart);
|
|
|
|
write32(_contents.data() + pagePos + sizeof(uint32_t), entry.encoding,
|
|
_isBig);
|
|
if ((entry.encoding & 0x0f000000U) ==
|
|
_archHandler.dwarfCompactUnwindType())
|
|
addEhFrameReference(pagePos + sizeof(uint32_t), entry.ehFrame);
|
|
|
|
pagePos += 2 * sizeof(uint32_t);
|
|
}
|
|
}
|
|
|
|
void addEhFrameReference(uint32_t offset, const Atom *dest,
|
|
Reference::Addend addend = 0) {
|
|
addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
|
|
_archHandler.unwindRefToEhFrameKind(), offset, dest, addend);
|
|
}
|
|
|
|
void addImageReference(uint32_t offset, const Atom *dest,
|
|
Reference::Addend addend = 0) {
|
|
addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
|
|
_archHandler.imageOffsetKind(), offset, dest, addend);
|
|
}
|
|
|
|
void addImageReferenceIndirect(uint32_t offset, const Atom *dest) {
|
|
addReference(Reference::KindNamespace::mach_o, _archHandler.kindArch(),
|
|
_archHandler.imageOffsetKindIndirect(), offset, dest, 0);
|
|
}
|
|
|
|
private:
|
|
mach_o::ArchHandler &_archHandler;
|
|
std::vector<uint8_t> _contents;
|
|
uint32_t _commonEncodingsOffset;
|
|
uint32_t _personalityArrayOffset;
|
|
uint32_t _topLevelIndexOffset;
|
|
uint32_t _lsdaIndexOffset;
|
|
uint32_t _firstPageOffset;
|
|
bool _isBig;
|
|
};
|
|
|
|
/// Pass for instantiating and optimizing GOT slots.
|
|
///
|
|
class CompactUnwindPass : public Pass {
|
|
public:
|
|
CompactUnwindPass(const MachOLinkingContext &context)
|
|
: _ctx(context), _archHandler(_ctx.archHandler()),
|
|
_file(*_ctx.make_file<MachOFile>("<mach-o Compact Unwind Pass>")),
|
|
_isBig(MachOLinkingContext::isBigEndian(_ctx.arch())) {
|
|
_file.setOrdinal(_ctx.getNextOrdinalAndIncrement());
|
|
}
|
|
|
|
private:
|
|
std::error_code perform(SimpleFile &mergedFile) override {
|
|
DEBUG(llvm::dbgs() << "MachO Compact Unwind pass\n");
|
|
|
|
std::map<const Atom *, CompactUnwindEntry> unwindLocs;
|
|
std::map<const Atom *, const Atom *> dwarfFrames;
|
|
std::vector<const Atom *> personalities;
|
|
uint32_t numLSDAs = 0;
|
|
|
|
// First collect all __compact_unwind and __eh_frame entries, addressable by
|
|
// the function referred to.
|
|
collectCompactUnwindEntries(mergedFile, unwindLocs, personalities,
|
|
numLSDAs);
|
|
|
|
collectDwarfFrameEntries(mergedFile, dwarfFrames);
|
|
|
|
// Skip rest of pass if no unwind info.
|
|
if (unwindLocs.empty() && dwarfFrames.empty())
|
|
return std::error_code();
|
|
|
|
// FIXME: if there are more than 4 personality functions then we need to
|
|
// defer to DWARF info for the ones we don't put in the list. They should
|
|
// also probably be sorted by frequency.
|
|
assert(personalities.size() <= 4);
|
|
|
|
// TODO: Find commmon encodings for use by compressed pages.
|
|
std::vector<uint32_t> commonEncodings;
|
|
|
|
// Now sort the entries by final address and fixup the compact encoding to
|
|
// its final form (i.e. set personality function bits & create DWARF
|
|
// references where needed).
|
|
std::vector<CompactUnwindEntry> unwindInfos = createUnwindInfoEntries(
|
|
mergedFile, unwindLocs, personalities, dwarfFrames);
|
|
|
|
// Remove any unused eh-frame atoms.
|
|
pruneUnusedEHFrames(mergedFile, unwindInfos, unwindLocs, dwarfFrames);
|
|
|
|
// Finally, we can start creating pages based on these entries.
|
|
|
|
DEBUG(llvm::dbgs() << " Splitting entries into pages\n");
|
|
// FIXME: we split the entries into pages naively: lots of 4k pages followed
|
|
// by a small one. ld64 tried to minimize space and align them to real 4k
|
|
// boundaries. That might be worth doing, or perhaps we could perform some
|
|
// minor balancing for expected number of lookups.
|
|
std::vector<UnwindInfoPage> pages;
|
|
auto remainingInfos = llvm::makeArrayRef(unwindInfos);
|
|
do {
|
|
pages.push_back(UnwindInfoPage());
|
|
|
|
// FIXME: we only create regular pages at the moment. These can hold up to
|
|
// 1021 entries according to the documentation.
|
|
unsigned entriesInPage = std::min(1021U, (unsigned)remainingInfos.size());
|
|
|
|
pages.back().entries = remainingInfos.slice(0, entriesInPage);
|
|
remainingInfos = remainingInfos.slice(entriesInPage);
|
|
|
|
DEBUG(llvm::dbgs()
|
|
<< " Page from " << pages.back().entries[0].rangeStart->name()
|
|
<< " to " << pages.back().entries.back().rangeStart->name() << " + "
|
|
<< llvm::format("0x%x", pages.back().entries.back().rangeLength)
|
|
<< " has " << entriesInPage << " entries\n");
|
|
} while (!remainingInfos.empty());
|
|
|
|
auto *unwind = new (_file.allocator())
|
|
UnwindInfoAtom(_archHandler, _file, _isBig, personalities,
|
|
commonEncodings, pages, numLSDAs);
|
|
mergedFile.addAtom(*unwind);
|
|
|
|
// Finally, remove all __compact_unwind atoms now that we've processed them.
|
|
mergedFile.removeDefinedAtomsIf([](const DefinedAtom *atom) {
|
|
return atom->contentType() == DefinedAtom::typeCompactUnwindInfo;
|
|
});
|
|
|
|
return std::error_code();
|
|
}
|
|
|
|
void collectCompactUnwindEntries(
|
|
const SimpleFile &mergedFile,
|
|
std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
|
|
std::vector<const Atom *> &personalities, uint32_t &numLSDAs) {
|
|
DEBUG(llvm::dbgs() << " Collecting __compact_unwind entries\n");
|
|
|
|
for (const DefinedAtom *atom : mergedFile.defined()) {
|
|
if (atom->contentType() != DefinedAtom::typeCompactUnwindInfo)
|
|
continue;
|
|
|
|
auto unwindEntry = extractCompactUnwindEntry(atom);
|
|
unwindLocs.insert(std::make_pair(unwindEntry.rangeStart, unwindEntry));
|
|
|
|
DEBUG(llvm::dbgs() << " Entry for " << unwindEntry.rangeStart->name()
|
|
<< ", encoding="
|
|
<< llvm::format("0x%08x", unwindEntry.encoding));
|
|
if (unwindEntry.personalityFunction)
|
|
DEBUG(llvm::dbgs() << ", personality="
|
|
<< unwindEntry.personalityFunction->name()
|
|
<< ", lsdaLoc=" << unwindEntry.lsdaLocation->name());
|
|
DEBUG(llvm::dbgs() << '\n');
|
|
|
|
// Count number of LSDAs we see, since we need to know how big the index
|
|
// will be while laying out the section.
|
|
if (unwindEntry.lsdaLocation)
|
|
++numLSDAs;
|
|
|
|
// Gather the personality functions now, so that they're in deterministic
|
|
// order (derived from the DefinedAtom order).
|
|
if (unwindEntry.personalityFunction) {
|
|
auto pFunc = std::find(personalities.begin(), personalities.end(),
|
|
unwindEntry.personalityFunction);
|
|
if (pFunc == personalities.end())
|
|
personalities.push_back(unwindEntry.personalityFunction);
|
|
}
|
|
}
|
|
}
|
|
|
|
CompactUnwindEntry extractCompactUnwindEntry(const DefinedAtom *atom) {
|
|
CompactUnwindEntry entry;
|
|
|
|
for (const Reference *ref : *atom) {
|
|
switch (ref->offsetInAtom()) {
|
|
case 0:
|
|
// FIXME: there could legitimately be functions with multiple encoding
|
|
// entries. However, nothing produces them at the moment.
|
|
assert(ref->addend() == 0 && "unexpected offset into function");
|
|
entry.rangeStart = ref->target();
|
|
break;
|
|
case 0x10:
|
|
assert(ref->addend() == 0 && "unexpected offset into personality fn");
|
|
entry.personalityFunction = ref->target();
|
|
break;
|
|
case 0x18:
|
|
assert(ref->addend() == 0 && "unexpected offset into LSDA atom");
|
|
entry.lsdaLocation = ref->target();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (atom->rawContent().size() < 4 * sizeof(uint32_t))
|
|
return entry;
|
|
|
|
using normalized::read32;
|
|
entry.rangeLength =
|
|
read32(atom->rawContent().data() + 2 * sizeof(uint32_t), _isBig);
|
|
entry.encoding =
|
|
read32(atom->rawContent().data() + 3 * sizeof(uint32_t), _isBig);
|
|
return entry;
|
|
}
|
|
|
|
void
|
|
collectDwarfFrameEntries(const SimpleFile &mergedFile,
|
|
std::map<const Atom *, const Atom *> &dwarfFrames) {
|
|
for (const DefinedAtom *ehFrameAtom : mergedFile.defined()) {
|
|
if (ehFrameAtom->contentType() != DefinedAtom::typeCFI)
|
|
continue;
|
|
if (ArchHandler::isDwarfCIE(_isBig, ehFrameAtom))
|
|
continue;
|
|
|
|
if (const Atom *function = _archHandler.fdeTargetFunction(ehFrameAtom))
|
|
dwarfFrames[function] = ehFrameAtom;
|
|
}
|
|
}
|
|
|
|
/// Every atom defined in __TEXT,__text needs an entry in the final
|
|
/// __unwind_info section (in order). These comes from two sources:
|
|
/// + Input __compact_unwind sections where possible (after adding the
|
|
/// personality function offset which is only known now).
|
|
/// + A synthesised reference to __eh_frame if there's no __compact_unwind
|
|
/// or too many personality functions to be accommodated.
|
|
std::vector<CompactUnwindEntry> createUnwindInfoEntries(
|
|
const SimpleFile &mergedFile,
|
|
const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
|
|
const std::vector<const Atom *> &personalities,
|
|
const std::map<const Atom *, const Atom *> &dwarfFrames) {
|
|
std::vector<CompactUnwindEntry> unwindInfos;
|
|
|
|
DEBUG(llvm::dbgs() << " Creating __unwind_info entries\n");
|
|
// The final order in the __unwind_info section must be derived from the
|
|
// order of typeCode atoms, since that's how they'll be put into the object
|
|
// file eventually (yuck!).
|
|
for (const DefinedAtom *atom : mergedFile.defined()) {
|
|
if (atom->contentType() != DefinedAtom::typeCode)
|
|
continue;
|
|
|
|
unwindInfos.push_back(finalizeUnwindInfoEntryForAtom(
|
|
atom, unwindLocs, personalities, dwarfFrames));
|
|
|
|
DEBUG(llvm::dbgs() << " Entry for " << atom->name()
|
|
<< ", final encoding="
|
|
<< llvm::format("0x%08x", unwindInfos.back().encoding)
|
|
<< '\n');
|
|
}
|
|
|
|
return unwindInfos;
|
|
}
|
|
|
|
/// Remove unused EH frames.
|
|
///
|
|
/// An EH frame is considered unused if there is a corresponding compact
|
|
/// unwind atom that doesn't require the EH frame.
|
|
void pruneUnusedEHFrames(
|
|
SimpleFile &mergedFile,
|
|
const std::vector<CompactUnwindEntry> &unwindInfos,
|
|
const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
|
|
const std::map<const Atom *, const Atom *> &dwarfFrames) {
|
|
|
|
// Worklist of all 'used' FDEs.
|
|
std::vector<const DefinedAtom *> usedDwarfWorklist;
|
|
|
|
// We have to check two conditions when building the worklist:
|
|
// (1) EH frames used by compact unwind entries.
|
|
for (auto &entry : unwindInfos)
|
|
if (entry.ehFrame)
|
|
usedDwarfWorklist.push_back(cast<DefinedAtom>(entry.ehFrame));
|
|
|
|
// (2) EH frames that reference functions with no corresponding compact
|
|
// unwind info.
|
|
for (auto &entry : dwarfFrames)
|
|
if (!unwindLocs.count(entry.first))
|
|
usedDwarfWorklist.push_back(cast<DefinedAtom>(entry.second));
|
|
|
|
// Add all transitively referenced CFI atoms by processing the worklist.
|
|
std::set<const Atom *> usedDwarfFrames;
|
|
while (!usedDwarfWorklist.empty()) {
|
|
const DefinedAtom *cfiAtom = usedDwarfWorklist.back();
|
|
usedDwarfWorklist.pop_back();
|
|
usedDwarfFrames.insert(cfiAtom);
|
|
for (const auto *ref : *cfiAtom) {
|
|
const DefinedAtom *cfiTarget = dyn_cast<DefinedAtom>(ref->target());
|
|
if (cfiTarget->contentType() == DefinedAtom::typeCFI)
|
|
usedDwarfWorklist.push_back(cfiTarget);
|
|
}
|
|
}
|
|
|
|
// Finally, delete all unreferenced CFI atoms.
|
|
mergedFile.removeDefinedAtomsIf([&](const DefinedAtom *atom) {
|
|
if ((atom->contentType() == DefinedAtom::typeCFI) &&
|
|
!usedDwarfFrames.count(atom))
|
|
return true;
|
|
return false;
|
|
});
|
|
}
|
|
|
|
CompactUnwindEntry finalizeUnwindInfoEntryForAtom(
|
|
const DefinedAtom *function,
|
|
const std::map<const Atom *, CompactUnwindEntry> &unwindLocs,
|
|
const std::vector<const Atom *> &personalities,
|
|
const std::map<const Atom *, const Atom *> &dwarfFrames) {
|
|
auto unwindLoc = unwindLocs.find(function);
|
|
|
|
CompactUnwindEntry entry;
|
|
if (unwindLoc == unwindLocs.end()) {
|
|
// Default entry has correct encoding (0 => no unwind), but we need to
|
|
// synthesise the function.
|
|
entry.rangeStart = function;
|
|
entry.rangeLength = function->size();
|
|
} else
|
|
entry = unwindLoc->second;
|
|
|
|
|
|
// If there's no __compact_unwind entry, or it explicitly says to use
|
|
// __eh_frame, we need to try and fill in the correct DWARF atom.
|
|
if (entry.encoding == _archHandler.dwarfCompactUnwindType() ||
|
|
entry.encoding == 0) {
|
|
auto dwarfFrame = dwarfFrames.find(function);
|
|
if (dwarfFrame != dwarfFrames.end()) {
|
|
entry.encoding = _archHandler.dwarfCompactUnwindType();
|
|
entry.ehFrame = dwarfFrame->second;
|
|
}
|
|
}
|
|
|
|
auto personality = std::find(personalities.begin(), personalities.end(),
|
|
entry.personalityFunction);
|
|
uint32_t personalityIdx = personality == personalities.end()
|
|
? 0
|
|
: personality - personalities.begin() + 1;
|
|
|
|
// FIXME: We should also use DWARF when there isn't enough room for the
|
|
// personality function in the compact encoding.
|
|
assert(personalityIdx < 4 && "too many personality functions");
|
|
|
|
entry.encoding |= personalityIdx << 28;
|
|
|
|
if (entry.lsdaLocation)
|
|
entry.encoding |= 1U << 30;
|
|
|
|
return entry;
|
|
}
|
|
|
|
const MachOLinkingContext &_ctx;
|
|
mach_o::ArchHandler &_archHandler;
|
|
MachOFile &_file;
|
|
bool _isBig;
|
|
};
|
|
|
|
void addCompactUnwindPass(PassManager &pm, const MachOLinkingContext &ctx) {
|
|
assert(ctx.needsCompactUnwindPass());
|
|
pm.add(llvm::make_unique<CompactUnwindPass>(ctx));
|
|
}
|
|
|
|
} // end namesapce mach_o
|
|
} // end namesapce lld
|