Files
llvm/bolt/ReorderAlgorithm.cpp
Theodoros Kasampalis d09b00ebff Refactoring of the reordering algorithms
Summary:
The various reorder and clustering algorithms have been refactored
into separate classes, so that it is easier to add new algorithms and/or
change the logic of algorithm selection.

(cherry picked from FBD3473656)
2016-06-16 18:47:57 -07:00

437 lines
14 KiB
C++

//===--- ReorderAlgorithm.cpp - Basic block reorderng algorithms ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements different basic block reordering algorithms.
//
//===----------------------------------------------------------------------===//
#include "ReorderAlgorithm.h"
#include "BinaryBasicBlock.h"
#include "BinaryFunction.h"
#include "llvm/Support/CommandLine.h"
#include <queue>
using namespace llvm;
using namespace bolt;
namespace opts {
static cl::opt<bool>
PrintClusters("print-clusters", cl::desc("print clusters"), cl::Optional);
} // namespace opts
void ClusterAlgorithm::computeClusterAverageFrequency() {
AvgFreq.resize(Clusters.size(), 0.0);
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
double Freq = 0.0;
for (auto BB : Clusters[I]) {
if (!BB->empty() && BB->size() != BB->getNumPseudos())
Freq += ((double) BB->getExecutionCount()) /
(BB->size() - BB->getNumPseudos());
}
AvgFreq[I] = Freq;
}
}
void ClusterAlgorithm::printClusters() const {
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
errs() << "Cluster number " << I;
if (AvgFreq.size() == Clusters.size())
errs() << " (frequency: " << AvgFreq[I] << ")";
errs() << " : ";
auto Sep = "";
for (auto BB : Clusters[I]) {
errs() << Sep << BB->getName();
Sep = ", ";
}
errs() << "\n";
}
}
void ClusterAlgorithm::reset() {
Clusters.clear();
ClusterEdges.clear();
AvgFreq.clear();
}
void GreedyClusterAlgorithm::clusterBasicBlocks(const BinaryFunction &BF) {
reset();
// Greedy heuristic implementation for the TSP, applied to BB layout. Try to
// maximize weight during a path traversing all BBs. In this way, we will
// convert the hottest branches into fall-throughs.
// Encode an edge between two basic blocks, source and destination
typedef std::pair<BinaryBasicBlock *, BinaryBasicBlock *> EdgeTy;
std::map<EdgeTy, uint64_t> Weight;
// Define a comparison function to establish SWO between edges
auto Comp = [&] (EdgeTy A, EdgeTy B) {
// With equal weights, prioritize branches with lower index
// source/destination. This helps to keep original block order for blocks
// when optimal order cannot be deducted from a profile.
if (Weight[A] == Weight[B]) {
uint32_t ASrcBBIndex = BF.getIndex(A.first);
uint32_t BSrcBBIndex = BF.getIndex(B.first);
if (ASrcBBIndex != BSrcBBIndex)
return ASrcBBIndex > BSrcBBIndex;
return BF.getIndex(A.second) > BF.getIndex(B.second);
}
return Weight[A] < Weight[B];
};
std::priority_queue<EdgeTy, std::vector<EdgeTy>, decltype(Comp)> Queue(Comp);
typedef std::map<BinaryBasicBlock *, int> BBToClusterMapTy;
BBToClusterMapTy BBToClusterMap;
ClusterEdges.resize(BF.layout_size());
for (auto BB : BF.layout()) {
// Create a cluster for this BB
uint32_t I = Clusters.size();
Clusters.emplace_back();
auto &Cluster = Clusters.back();
Cluster.push_back(BB);
BBToClusterMap[BB] = I;
// Populate priority queue with edges
auto BI = BB->branch_info_begin();
for (auto &I : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Weight[std::make_pair(BB, I)] = BI->Count;
Queue.push(std::make_pair(BB, I));
++BI;
}
}
// Grow clusters in a greedy fashion
while (!Queue.empty()) {
auto elmt = Queue.top();
Queue.pop();
BinaryBasicBlock *BBSrc = elmt.first;
BinaryBasicBlock *BBDst = elmt.second;
// Case 1: BBSrc and BBDst are the same. Ignore this edge
if (BBSrc == BBDst || BBDst == *BF.layout_begin())
continue;
int I = BBToClusterMap[BBSrc];
int J = BBToClusterMap[BBDst];
// Case 2: If they are already allocated at the same cluster, just increase
// the weight of this cluster
if (I == J) {
ClusterEdges[I][I] += Weight[elmt];
continue;
}
auto &ClusterA = Clusters[I];
auto &ClusterB = Clusters[J];
if (ClusterA.back() == BBSrc && ClusterB.front() == BBDst) {
// Case 3: BBSrc is at the end of a cluster and BBDst is at the start,
// allowing us to merge two clusters
for (auto BB : ClusterB)
BBToClusterMap[BB] = I;
ClusterA.insert(ClusterA.end(), ClusterB.begin(), ClusterB.end());
ClusterB.clear();
// Iterate through all inter-cluster edges and transfer edges targeting
// cluster B to cluster A.
// It is bad to have to iterate though all edges when we could have a list
// of predecessors for cluster B. However, it's not clear if it is worth
// the added code complexity to create a data structure for clusters that
// maintains a list of predecessors. Maybe change this if it becomes a
// deal breaker.
for (uint32_t K = 0, E = ClusterEdges.size(); K != E; ++K)
ClusterEdges[K][I] += ClusterEdges[K][J];
} else {
// Case 4: Both BBSrc and BBDst are allocated in positions we cannot
// merge them. Annotate the weight of this edge in the weight between
// clusters to help us decide ordering between these clusters.
ClusterEdges[I][J] += Weight[elmt];
}
}
}
void OptimalReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
std::vector<std::vector<uint64_t>> Weight;
std::map<BinaryBasicBlock *, int> BBToIndex;
std::vector<BinaryBasicBlock *> IndexToBB;
unsigned N = BF.layout_size();
// Populating weight map and index map
for (auto BB : BF.layout()) {
BBToIndex[BB] = IndexToBB.size();
IndexToBB.push_back(BB);
}
Weight.resize(N);
for (auto BB : BF.layout()) {
auto BI = BB->branch_info_begin();
Weight[BBToIndex[BB]].resize(N);
for (auto I : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Weight[BBToIndex[BB]][BBToIndex[I]] = BI->Count;
++BI;
}
}
std::vector<std::vector<int64_t>> DP;
DP.resize(1 << N);
for (auto &Elmt : DP) {
Elmt.resize(N, -1);
}
// Start with the entry basic block being allocated with cost zero
DP[1][0] = 0;
// Walk through TSP solutions using a bitmask to represent state (current set
// of BBs in the layout)
unsigned BestSet = 1;
unsigned BestLast = 0;
int64_t BestWeight = 0;
for (unsigned Set = 1; Set < (1U << N); ++Set) {
// Traverse each possibility of Last BB visited in this layout
for (unsigned Last = 0; Last < N; ++Last) {
// Case 1: There is no possible layout with this BB as Last
if (DP[Set][Last] == -1)
continue;
// Case 2: There is a layout with this Set and this Last, and we try
// to expand this set with New
for (unsigned New = 1; New < N; ++New) {
// Case 2a: BB "New" is already in this Set
if ((Set & (1 << New)) != 0)
continue;
// Case 2b: BB "New" is not in this set and we add it to this Set and
// record total weight of this layout with "New" as the last BB.
unsigned NewSet = (Set | (1 << New));
if (DP[NewSet][New] == -1)
DP[NewSet][New] = DP[Set][Last] + (int64_t)Weight[Last][New];
DP[NewSet][New] = std::max(DP[NewSet][New],
DP[Set][Last] + (int64_t)Weight[Last][New]);
if (DP[NewSet][New] > BestWeight) {
BestWeight = DP[NewSet][New];
BestSet = NewSet;
BestLast = New;
}
}
}
}
// Define final function layout based on layout that maximizes weight
unsigned Last = BestLast;
unsigned Set = BestSet;
std::vector<bool> Visited;
Visited.resize(N);
Visited[Last] = true;
Order.push_back(IndexToBB[Last]);
Set = Set & ~(1U << Last);
while (Set != 0) {
int64_t Best = -1;
for (unsigned I = 0; I < N; ++I) {
if (DP[Set][I] == -1)
continue;
if (DP[Set][I] > Best) {
Last = I;
Best = DP[Set][I];
}
}
Visited[Last] = true;
Order.push_back(IndexToBB[Last]);
Set = Set & ~(1U << Last);
}
std::reverse(Order.begin(), Order.end());
// Finalize layout with BBs that weren't assigned to the layout
for (auto BB : BF.layout()) {
if (Visited[BBToIndex[BB]] == false)
Order.push_back(BB);
}
}
void OptimizeReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
if (opts::PrintClusters)
CAlgo->printClusters();
// Arrange basic blocks according to clusters.
for (ClusterAlgorithm::ClusterTy &Cluster : CAlgo->Clusters)
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
void OptimizeBranchReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;;
std::vector<std::map<uint32_t, uint64_t>> &ClusterEdges = CAlgo->ClusterEdges;
// Compute clusters' average frequencies.
CAlgo->computeClusterAverageFrequency();
std::vector<double> &AvgFreq = CAlgo->AvgFreq;;
if (opts::PrintClusters)
CAlgo->printClusters();
// Cluster layout order
std::vector<uint32_t> ClusterOrder;
// Do a topological sort for clusters, prioritizing frequently-executed BBs
// during the traversal.
std::stack<uint32_t> Stack;
std::vector<uint32_t> Status;
std::vector<uint32_t> Parent;
Status.resize(Clusters.size(), 0);
Parent.resize(Clusters.size(), 0);
constexpr uint32_t STACKED = 1;
constexpr uint32_t VISITED = 2;
Status[0] = STACKED;
Stack.push(0);
while (!Stack.empty()) {
uint32_t I = Stack.top();
if (!(Status[I] & VISITED)) {
Status[I] |= VISITED;
// Order successors by weight
auto ClusterComp = [&ClusterEdges, I](uint32_t A, uint32_t B) {
return ClusterEdges[I][A] > ClusterEdges[I][B];
};
std::priority_queue<uint32_t, std::vector<uint32_t>,
decltype(ClusterComp)> SuccQueue(ClusterComp);
for (auto &Target: ClusterEdges[I]) {
if (Target.second > 0 && !(Status[Target.first] & STACKED) &&
!Clusters[Target.first].empty()) {
Parent[Target.first] = I;
Status[Target.first] = STACKED;
SuccQueue.push(Target.first);
}
}
while (!SuccQueue.empty()) {
Stack.push(SuccQueue.top());
SuccQueue.pop();
}
continue;
}
// Already visited this node
Stack.pop();
ClusterOrder.push_back(I);
}
std::reverse(ClusterOrder.begin(), ClusterOrder.end());
// Put unreachable clusters at the end
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!(Status[I] & VISITED) && !Clusters[I].empty())
ClusterOrder.push_back(I);
// Sort nodes with equal precedence
auto Beg = ClusterOrder.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, ClusterOrder.end(),
[&AvgFreq, &Parent](uint32_t A, uint32_t B) {
uint32_t P = Parent[A];
while (Parent[P] != 0) {
if (Parent[P] == B)
return false;
P = Parent[P];
}
P = Parent[B];
while (Parent[P] != 0) {
if (Parent[P] == A)
return true;
P = Parent[P];
}
return AvgFreq[A] > AvgFreq[B];
});
if (opts::PrintClusters) {
errs() << "New cluster order: ";
auto Sep = "";
for (auto O : ClusterOrder) {
errs() << Sep << O;
Sep = ", ";
}
errs() << '\n';
}
// Arrange basic blocks according to cluster order.
for (uint32_t ClusterIndex : ClusterOrder) {
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
}
void OptimizeCacheReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;;
// Compute clusters' average frequencies.
CAlgo->computeClusterAverageFrequency();
std::vector<double> &AvgFreq = CAlgo->AvgFreq;;
if (opts::PrintClusters)
CAlgo->printClusters();
// Cluster layout order
std::vector<uint32_t> ClusterOrder;
// Order clusters based on average instruction execution frequency
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!Clusters[I].empty())
ClusterOrder.push_back(I);
auto Beg = ClusterOrder.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, ClusterOrder.end(), [&AvgFreq](uint32_t A, uint32_t B) {
return AvgFreq[A] > AvgFreq[B];
});
if (opts::PrintClusters) {
errs() << "New cluster order: ";
auto Sep = "";
for (auto O : ClusterOrder) {
errs() << Sep << O;
Sep = ", ";
}
errs() << '\n';
}
// Arrange basic blocks according to cluster order.
for (uint32_t ClusterIndex : ClusterOrder) {
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
}
void ReverseReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
auto FirstBB = *BF.layout_begin();
Order.push_back(FirstBB);
for (auto RLI = BF.layout_rbegin(); *RLI != FirstBB; ++RLI)
Order.push_back(*RLI);
}