mirror of
https://github.com/intel/llvm.git
synced 2026-01-25 10:55:58 +08:00
Summary: The various reorder and clustering algorithms have been refactored into separate classes, so that it is easier to add new algorithms and/or change the logic of algorithm selection. (cherry picked from FBD3473656)
437 lines
14 KiB
C++
437 lines
14 KiB
C++
//===--- ReorderAlgorithm.cpp - Basic block reorderng algorithms ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implements different basic block reordering algorithms.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ReorderAlgorithm.h"
|
|
#include "BinaryBasicBlock.h"
|
|
#include "BinaryFunction.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <queue>
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
namespace opts {
|
|
|
|
static cl::opt<bool>
|
|
PrintClusters("print-clusters", cl::desc("print clusters"), cl::Optional);
|
|
|
|
} // namespace opts
|
|
|
|
void ClusterAlgorithm::computeClusterAverageFrequency() {
|
|
AvgFreq.resize(Clusters.size(), 0.0);
|
|
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
|
|
double Freq = 0.0;
|
|
for (auto BB : Clusters[I]) {
|
|
if (!BB->empty() && BB->size() != BB->getNumPseudos())
|
|
Freq += ((double) BB->getExecutionCount()) /
|
|
(BB->size() - BB->getNumPseudos());
|
|
}
|
|
AvgFreq[I] = Freq;
|
|
}
|
|
}
|
|
|
|
void ClusterAlgorithm::printClusters() const {
|
|
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
|
|
errs() << "Cluster number " << I;
|
|
if (AvgFreq.size() == Clusters.size())
|
|
errs() << " (frequency: " << AvgFreq[I] << ")";
|
|
errs() << " : ";
|
|
auto Sep = "";
|
|
for (auto BB : Clusters[I]) {
|
|
errs() << Sep << BB->getName();
|
|
Sep = ", ";
|
|
}
|
|
errs() << "\n";
|
|
}
|
|
}
|
|
|
|
void ClusterAlgorithm::reset() {
|
|
Clusters.clear();
|
|
ClusterEdges.clear();
|
|
AvgFreq.clear();
|
|
}
|
|
|
|
void GreedyClusterAlgorithm::clusterBasicBlocks(const BinaryFunction &BF) {
|
|
reset();
|
|
|
|
// Greedy heuristic implementation for the TSP, applied to BB layout. Try to
|
|
// maximize weight during a path traversing all BBs. In this way, we will
|
|
// convert the hottest branches into fall-throughs.
|
|
|
|
// Encode an edge between two basic blocks, source and destination
|
|
typedef std::pair<BinaryBasicBlock *, BinaryBasicBlock *> EdgeTy;
|
|
std::map<EdgeTy, uint64_t> Weight;
|
|
|
|
// Define a comparison function to establish SWO between edges
|
|
auto Comp = [&] (EdgeTy A, EdgeTy B) {
|
|
// With equal weights, prioritize branches with lower index
|
|
// source/destination. This helps to keep original block order for blocks
|
|
// when optimal order cannot be deducted from a profile.
|
|
if (Weight[A] == Weight[B]) {
|
|
uint32_t ASrcBBIndex = BF.getIndex(A.first);
|
|
uint32_t BSrcBBIndex = BF.getIndex(B.first);
|
|
if (ASrcBBIndex != BSrcBBIndex)
|
|
return ASrcBBIndex > BSrcBBIndex;
|
|
return BF.getIndex(A.second) > BF.getIndex(B.second);
|
|
}
|
|
return Weight[A] < Weight[B];
|
|
};
|
|
std::priority_queue<EdgeTy, std::vector<EdgeTy>, decltype(Comp)> Queue(Comp);
|
|
|
|
typedef std::map<BinaryBasicBlock *, int> BBToClusterMapTy;
|
|
BBToClusterMapTy BBToClusterMap;
|
|
|
|
ClusterEdges.resize(BF.layout_size());
|
|
|
|
for (auto BB : BF.layout()) {
|
|
// Create a cluster for this BB
|
|
uint32_t I = Clusters.size();
|
|
Clusters.emplace_back();
|
|
auto &Cluster = Clusters.back();
|
|
Cluster.push_back(BB);
|
|
BBToClusterMap[BB] = I;
|
|
// Populate priority queue with edges
|
|
auto BI = BB->branch_info_begin();
|
|
for (auto &I : BB->successors()) {
|
|
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
|
|
Weight[std::make_pair(BB, I)] = BI->Count;
|
|
Queue.push(std::make_pair(BB, I));
|
|
++BI;
|
|
}
|
|
}
|
|
|
|
// Grow clusters in a greedy fashion
|
|
while (!Queue.empty()) {
|
|
auto elmt = Queue.top();
|
|
Queue.pop();
|
|
|
|
BinaryBasicBlock *BBSrc = elmt.first;
|
|
BinaryBasicBlock *BBDst = elmt.second;
|
|
|
|
// Case 1: BBSrc and BBDst are the same. Ignore this edge
|
|
if (BBSrc == BBDst || BBDst == *BF.layout_begin())
|
|
continue;
|
|
|
|
int I = BBToClusterMap[BBSrc];
|
|
int J = BBToClusterMap[BBDst];
|
|
|
|
// Case 2: If they are already allocated at the same cluster, just increase
|
|
// the weight of this cluster
|
|
if (I == J) {
|
|
ClusterEdges[I][I] += Weight[elmt];
|
|
continue;
|
|
}
|
|
|
|
auto &ClusterA = Clusters[I];
|
|
auto &ClusterB = Clusters[J];
|
|
if (ClusterA.back() == BBSrc && ClusterB.front() == BBDst) {
|
|
// Case 3: BBSrc is at the end of a cluster and BBDst is at the start,
|
|
// allowing us to merge two clusters
|
|
for (auto BB : ClusterB)
|
|
BBToClusterMap[BB] = I;
|
|
ClusterA.insert(ClusterA.end(), ClusterB.begin(), ClusterB.end());
|
|
ClusterB.clear();
|
|
// Iterate through all inter-cluster edges and transfer edges targeting
|
|
// cluster B to cluster A.
|
|
// It is bad to have to iterate though all edges when we could have a list
|
|
// of predecessors for cluster B. However, it's not clear if it is worth
|
|
// the added code complexity to create a data structure for clusters that
|
|
// maintains a list of predecessors. Maybe change this if it becomes a
|
|
// deal breaker.
|
|
for (uint32_t K = 0, E = ClusterEdges.size(); K != E; ++K)
|
|
ClusterEdges[K][I] += ClusterEdges[K][J];
|
|
} else {
|
|
// Case 4: Both BBSrc and BBDst are allocated in positions we cannot
|
|
// merge them. Annotate the weight of this edge in the weight between
|
|
// clusters to help us decide ordering between these clusters.
|
|
ClusterEdges[I][J] += Weight[elmt];
|
|
}
|
|
}
|
|
}
|
|
|
|
void OptimalReorderAlgorithm::reorderBasicBlocks(
|
|
const BinaryFunction &BF, BasicBlockOrder &Order) const {
|
|
std::vector<std::vector<uint64_t>> Weight;
|
|
std::map<BinaryBasicBlock *, int> BBToIndex;
|
|
std::vector<BinaryBasicBlock *> IndexToBB;
|
|
|
|
unsigned N = BF.layout_size();
|
|
// Populating weight map and index map
|
|
for (auto BB : BF.layout()) {
|
|
BBToIndex[BB] = IndexToBB.size();
|
|
IndexToBB.push_back(BB);
|
|
}
|
|
Weight.resize(N);
|
|
for (auto BB : BF.layout()) {
|
|
auto BI = BB->branch_info_begin();
|
|
Weight[BBToIndex[BB]].resize(N);
|
|
for (auto I : BB->successors()) {
|
|
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
|
|
Weight[BBToIndex[BB]][BBToIndex[I]] = BI->Count;
|
|
++BI;
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<int64_t>> DP;
|
|
DP.resize(1 << N);
|
|
for (auto &Elmt : DP) {
|
|
Elmt.resize(N, -1);
|
|
}
|
|
// Start with the entry basic block being allocated with cost zero
|
|
DP[1][0] = 0;
|
|
// Walk through TSP solutions using a bitmask to represent state (current set
|
|
// of BBs in the layout)
|
|
unsigned BestSet = 1;
|
|
unsigned BestLast = 0;
|
|
int64_t BestWeight = 0;
|
|
for (unsigned Set = 1; Set < (1U << N); ++Set) {
|
|
// Traverse each possibility of Last BB visited in this layout
|
|
for (unsigned Last = 0; Last < N; ++Last) {
|
|
// Case 1: There is no possible layout with this BB as Last
|
|
if (DP[Set][Last] == -1)
|
|
continue;
|
|
|
|
// Case 2: There is a layout with this Set and this Last, and we try
|
|
// to expand this set with New
|
|
for (unsigned New = 1; New < N; ++New) {
|
|
// Case 2a: BB "New" is already in this Set
|
|
if ((Set & (1 << New)) != 0)
|
|
continue;
|
|
|
|
// Case 2b: BB "New" is not in this set and we add it to this Set and
|
|
// record total weight of this layout with "New" as the last BB.
|
|
unsigned NewSet = (Set | (1 << New));
|
|
if (DP[NewSet][New] == -1)
|
|
DP[NewSet][New] = DP[Set][Last] + (int64_t)Weight[Last][New];
|
|
DP[NewSet][New] = std::max(DP[NewSet][New],
|
|
DP[Set][Last] + (int64_t)Weight[Last][New]);
|
|
|
|
if (DP[NewSet][New] > BestWeight) {
|
|
BestWeight = DP[NewSet][New];
|
|
BestSet = NewSet;
|
|
BestLast = New;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Define final function layout based on layout that maximizes weight
|
|
unsigned Last = BestLast;
|
|
unsigned Set = BestSet;
|
|
std::vector<bool> Visited;
|
|
Visited.resize(N);
|
|
Visited[Last] = true;
|
|
Order.push_back(IndexToBB[Last]);
|
|
Set = Set & ~(1U << Last);
|
|
while (Set != 0) {
|
|
int64_t Best = -1;
|
|
for (unsigned I = 0; I < N; ++I) {
|
|
if (DP[Set][I] == -1)
|
|
continue;
|
|
if (DP[Set][I] > Best) {
|
|
Last = I;
|
|
Best = DP[Set][I];
|
|
}
|
|
}
|
|
Visited[Last] = true;
|
|
Order.push_back(IndexToBB[Last]);
|
|
Set = Set & ~(1U << Last);
|
|
}
|
|
std::reverse(Order.begin(), Order.end());
|
|
|
|
// Finalize layout with BBs that weren't assigned to the layout
|
|
for (auto BB : BF.layout()) {
|
|
if (Visited[BBToIndex[BB]] == false)
|
|
Order.push_back(BB);
|
|
}
|
|
}
|
|
|
|
void OptimizeReorderAlgorithm::reorderBasicBlocks(
|
|
const BinaryFunction &BF, BasicBlockOrder &Order) const {
|
|
if (BF.layout_empty())
|
|
return;
|
|
|
|
// Cluster basic blocks.
|
|
CAlgo->clusterBasicBlocks(BF);
|
|
|
|
if (opts::PrintClusters)
|
|
CAlgo->printClusters();
|
|
|
|
// Arrange basic blocks according to clusters.
|
|
for (ClusterAlgorithm::ClusterTy &Cluster : CAlgo->Clusters)
|
|
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
|
|
}
|
|
|
|
void OptimizeBranchReorderAlgorithm::reorderBasicBlocks(
|
|
const BinaryFunction &BF, BasicBlockOrder &Order) const {
|
|
if (BF.layout_empty())
|
|
return;
|
|
|
|
// Cluster basic blocks.
|
|
CAlgo->clusterBasicBlocks(BF);
|
|
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;;
|
|
std::vector<std::map<uint32_t, uint64_t>> &ClusterEdges = CAlgo->ClusterEdges;
|
|
|
|
// Compute clusters' average frequencies.
|
|
CAlgo->computeClusterAverageFrequency();
|
|
std::vector<double> &AvgFreq = CAlgo->AvgFreq;;
|
|
|
|
if (opts::PrintClusters)
|
|
CAlgo->printClusters();
|
|
|
|
// Cluster layout order
|
|
std::vector<uint32_t> ClusterOrder;
|
|
|
|
// Do a topological sort for clusters, prioritizing frequently-executed BBs
|
|
// during the traversal.
|
|
std::stack<uint32_t> Stack;
|
|
std::vector<uint32_t> Status;
|
|
std::vector<uint32_t> Parent;
|
|
Status.resize(Clusters.size(), 0);
|
|
Parent.resize(Clusters.size(), 0);
|
|
constexpr uint32_t STACKED = 1;
|
|
constexpr uint32_t VISITED = 2;
|
|
Status[0] = STACKED;
|
|
Stack.push(0);
|
|
while (!Stack.empty()) {
|
|
uint32_t I = Stack.top();
|
|
if (!(Status[I] & VISITED)) {
|
|
Status[I] |= VISITED;
|
|
// Order successors by weight
|
|
auto ClusterComp = [&ClusterEdges, I](uint32_t A, uint32_t B) {
|
|
return ClusterEdges[I][A] > ClusterEdges[I][B];
|
|
};
|
|
std::priority_queue<uint32_t, std::vector<uint32_t>,
|
|
decltype(ClusterComp)> SuccQueue(ClusterComp);
|
|
for (auto &Target: ClusterEdges[I]) {
|
|
if (Target.second > 0 && !(Status[Target.first] & STACKED) &&
|
|
!Clusters[Target.first].empty()) {
|
|
Parent[Target.first] = I;
|
|
Status[Target.first] = STACKED;
|
|
SuccQueue.push(Target.first);
|
|
}
|
|
}
|
|
while (!SuccQueue.empty()) {
|
|
Stack.push(SuccQueue.top());
|
|
SuccQueue.pop();
|
|
}
|
|
continue;
|
|
}
|
|
// Already visited this node
|
|
Stack.pop();
|
|
ClusterOrder.push_back(I);
|
|
}
|
|
std::reverse(ClusterOrder.begin(), ClusterOrder.end());
|
|
// Put unreachable clusters at the end
|
|
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
|
|
if (!(Status[I] & VISITED) && !Clusters[I].empty())
|
|
ClusterOrder.push_back(I);
|
|
|
|
// Sort nodes with equal precedence
|
|
auto Beg = ClusterOrder.begin();
|
|
// Don't reorder the first cluster, which contains the function entry point
|
|
++Beg;
|
|
std::stable_sort(Beg, ClusterOrder.end(),
|
|
[&AvgFreq, &Parent](uint32_t A, uint32_t B) {
|
|
uint32_t P = Parent[A];
|
|
while (Parent[P] != 0) {
|
|
if (Parent[P] == B)
|
|
return false;
|
|
P = Parent[P];
|
|
}
|
|
P = Parent[B];
|
|
while (Parent[P] != 0) {
|
|
if (Parent[P] == A)
|
|
return true;
|
|
P = Parent[P];
|
|
}
|
|
return AvgFreq[A] > AvgFreq[B];
|
|
});
|
|
|
|
if (opts::PrintClusters) {
|
|
errs() << "New cluster order: ";
|
|
auto Sep = "";
|
|
for (auto O : ClusterOrder) {
|
|
errs() << Sep << O;
|
|
Sep = ", ";
|
|
}
|
|
errs() << '\n';
|
|
}
|
|
|
|
// Arrange basic blocks according to cluster order.
|
|
for (uint32_t ClusterIndex : ClusterOrder) {
|
|
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
|
|
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
|
|
}
|
|
}
|
|
|
|
void OptimizeCacheReorderAlgorithm::reorderBasicBlocks(
|
|
const BinaryFunction &BF, BasicBlockOrder &Order) const {
|
|
if (BF.layout_empty())
|
|
return;
|
|
|
|
// Cluster basic blocks.
|
|
CAlgo->clusterBasicBlocks(BF);
|
|
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;;
|
|
|
|
// Compute clusters' average frequencies.
|
|
CAlgo->computeClusterAverageFrequency();
|
|
std::vector<double> &AvgFreq = CAlgo->AvgFreq;;
|
|
|
|
if (opts::PrintClusters)
|
|
CAlgo->printClusters();
|
|
|
|
// Cluster layout order
|
|
std::vector<uint32_t> ClusterOrder;
|
|
|
|
// Order clusters based on average instruction execution frequency
|
|
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
|
|
if (!Clusters[I].empty())
|
|
ClusterOrder.push_back(I);
|
|
auto Beg = ClusterOrder.begin();
|
|
// Don't reorder the first cluster, which contains the function entry point
|
|
++Beg;
|
|
std::stable_sort(Beg, ClusterOrder.end(), [&AvgFreq](uint32_t A, uint32_t B) {
|
|
return AvgFreq[A] > AvgFreq[B];
|
|
});
|
|
|
|
if (opts::PrintClusters) {
|
|
errs() << "New cluster order: ";
|
|
auto Sep = "";
|
|
for (auto O : ClusterOrder) {
|
|
errs() << Sep << O;
|
|
Sep = ", ";
|
|
}
|
|
errs() << '\n';
|
|
}
|
|
|
|
// Arrange basic blocks according to cluster order.
|
|
for (uint32_t ClusterIndex : ClusterOrder) {
|
|
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
|
|
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
|
|
}
|
|
}
|
|
|
|
void ReverseReorderAlgorithm::reorderBasicBlocks(
|
|
const BinaryFunction &BF, BasicBlockOrder &Order) const {
|
|
if (BF.layout_empty())
|
|
return;
|
|
|
|
auto FirstBB = *BF.layout_begin();
|
|
Order.push_back(FirstBB);
|
|
for (auto RLI = BF.layout_rbegin(); *RLI != FirstBB; ++RLI)
|
|
Order.push_back(*RLI);
|
|
}
|
|
|
|
|