mirror of
https://github.com/intel/llvm.git
synced 2026-01-31 16:29:50 +08:00
This patch sets 'polymorphic' attribute of hlfir::ExprType when the value is created from a polymorphic entity. Memoization of such ExprType involves creating a mutable descriptor on the stack, which is initialized (as a null box) and passed to AllocatableApplyMold with the mold being the entity from which the ExprType value is being created. This patch fixes "creating polymorphic temporary" TODO and also several cases of "'fir.convert' op invalid type conversion" error. Reviewed By: tblah Differential Revision: https://reviews.llvm.org/D155541
818 lines
38 KiB
C++
818 lines
38 KiB
C++
//===- BufferizeHLFIR.cpp - Bufferize HLFIR ------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This file defines a pass that bufferize hlfir.expr. It translates operations
|
|
// producing or consuming hlfir.expr into operations operating on memory.
|
|
// An hlfir.expr is translated to a tuple<variable address, cleanupflag>
|
|
// where cleanupflag is set to true if storage for the expression was allocated
|
|
// on the heap.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/HLFIRTools.h"
|
|
#include "flang/Optimizer/Builder/MutableBox.h"
|
|
#include "flang/Optimizer/Builder/Runtime/Allocatable.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
|
|
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
|
|
#include "flang/Optimizer/HLFIR/HLFIROps.h"
|
|
#include "flang/Optimizer/HLFIR/Passes.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Support/LogicalResult.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
namespace hlfir {
|
|
#define GEN_PASS_DEF_BUFFERIZEHLFIR
|
|
#include "flang/Optimizer/HLFIR/Passes.h.inc"
|
|
} // namespace hlfir
|
|
|
|
namespace {
|
|
|
|
/// Helper to create tuple from a bufferized expr storage and clean up
|
|
/// instruction flag. The storage is an HLFIR variable so that it can
|
|
/// be manipulated as a variable later (all shape and length information
|
|
/// cam be retrieved from it).
|
|
static mlir::Value packageBufferizedExpr(mlir::Location loc,
|
|
fir::FirOpBuilder &builder,
|
|
hlfir::Entity storage,
|
|
mlir::Value mustFree) {
|
|
auto tupleType = mlir::TupleType::get(
|
|
builder.getContext(),
|
|
mlir::TypeRange{storage.getType(), mustFree.getType()});
|
|
auto undef = builder.create<fir::UndefOp>(loc, tupleType);
|
|
auto insert = builder.create<fir::InsertValueOp>(
|
|
loc, tupleType, undef, mustFree,
|
|
builder.getArrayAttr(
|
|
{builder.getIntegerAttr(builder.getIndexType(), 1)}));
|
|
return builder.create<fir::InsertValueOp>(
|
|
loc, tupleType, insert, storage,
|
|
builder.getArrayAttr(
|
|
{builder.getIntegerAttr(builder.getIndexType(), 0)}));
|
|
}
|
|
|
|
/// Helper to create tuple from a bufferized expr storage and constant
|
|
/// boolean clean-up flag.
|
|
static mlir::Value packageBufferizedExpr(mlir::Location loc,
|
|
fir::FirOpBuilder &builder,
|
|
hlfir::Entity storage, bool mustFree) {
|
|
mlir::Value mustFreeValue = builder.createBool(loc, mustFree);
|
|
return packageBufferizedExpr(loc, builder, storage, mustFreeValue);
|
|
}
|
|
|
|
/// Helper to extract the storage from a tuple created by packageBufferizedExpr.
|
|
/// It assumes no tuples are used as HLFIR operation operands, which is
|
|
/// currently enforced by the verifiers that only accept HLFIR value or
|
|
/// variable types which do not include tuples.
|
|
static hlfir::Entity getBufferizedExprStorage(mlir::Value bufferizedExpr) {
|
|
auto tupleType = bufferizedExpr.getType().dyn_cast<mlir::TupleType>();
|
|
if (!tupleType)
|
|
return hlfir::Entity{bufferizedExpr};
|
|
assert(tupleType.size() == 2 && "unexpected tuple type");
|
|
if (auto insert = bufferizedExpr.getDefiningOp<fir::InsertValueOp>())
|
|
if (insert.getVal().getType() == tupleType.getType(0))
|
|
return hlfir::Entity{insert.getVal()};
|
|
TODO(bufferizedExpr.getLoc(), "general extract storage case");
|
|
}
|
|
|
|
/// Helper to extract the clean-up flag from a tuple created by
|
|
/// packageBufferizedExpr.
|
|
static mlir::Value getBufferizedExprMustFreeFlag(mlir::Value bufferizedExpr) {
|
|
auto tupleType = bufferizedExpr.getType().dyn_cast<mlir::TupleType>();
|
|
if (!tupleType)
|
|
return bufferizedExpr;
|
|
assert(tupleType.size() == 2 && "unexpected tuple type");
|
|
if (auto insert = bufferizedExpr.getDefiningOp<fir::InsertValueOp>())
|
|
if (auto insert0 = insert.getAdt().getDefiningOp<fir::InsertValueOp>())
|
|
if (insert0.getVal().getType() == tupleType.getType(1))
|
|
return insert0.getVal();
|
|
TODO(bufferizedExpr.getLoc(), "general extract storage case");
|
|
}
|
|
|
|
static std::pair<hlfir::Entity, mlir::Value>
|
|
createTempFromMold(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
hlfir::Entity mold) {
|
|
llvm::SmallVector<mlir::Value> lenParams;
|
|
hlfir::genLengthParameters(loc, builder, mold, lenParams);
|
|
llvm::StringRef tmpName{".tmp"};
|
|
mlir::Value alloc;
|
|
mlir::Value isHeapAlloc;
|
|
mlir::Value shape{};
|
|
fir::FortranVariableFlagsAttr declAttrs;
|
|
|
|
if (mold.isPolymorphic()) {
|
|
// Create unallocated polymorphic temporary using the dynamic type
|
|
// of the mold. The static type of the temporary matches
|
|
// the static type of the mold, but then the dynamic type
|
|
// of the mold is applied to the temporary's descriptor.
|
|
|
|
if (mold.isArray())
|
|
hlfir::genShape(loc, builder, mold);
|
|
|
|
// Create polymorphic allocatable box on the stack.
|
|
mlir::Type boxHeapType = fir::HeapType::get(fir::unwrapRefType(
|
|
mlir::cast<fir::BaseBoxType>(mold.getType()).getEleTy()));
|
|
// The box must be initialized, because AllocatableApplyMold
|
|
// may read its contents (e.g. for checking whether it is allocated).
|
|
alloc = fir::factory::genNullBoxStorage(builder, loc,
|
|
fir::ClassType::get(boxHeapType));
|
|
// The temporary is unallocated even after AllocatableApplyMold below.
|
|
// If the temporary is used as assignment LHS it will be automatically
|
|
// allocated on the heap, as long as we use Assign family
|
|
// runtime functions. So set MustFree to true.
|
|
isHeapAlloc = builder.createBool(loc, true);
|
|
declAttrs = fir::FortranVariableFlagsAttr::get(
|
|
builder.getContext(), fir::FortranVariableFlagsEnum::allocatable);
|
|
} else if (mold.isArray()) {
|
|
mlir::Type sequenceType =
|
|
hlfir::getFortranElementOrSequenceType(mold.getType());
|
|
shape = hlfir::genShape(loc, builder, mold);
|
|
auto extents = hlfir::getIndexExtents(loc, builder, shape);
|
|
alloc = builder.createHeapTemporary(loc, sequenceType, tmpName, extents,
|
|
lenParams);
|
|
isHeapAlloc = builder.createBool(loc, true);
|
|
} else {
|
|
alloc = builder.createTemporary(loc, mold.getFortranElementType(), tmpName,
|
|
/*shape=*/std::nullopt, lenParams);
|
|
isHeapAlloc = builder.createBool(loc, false);
|
|
}
|
|
auto declareOp = builder.create<hlfir::DeclareOp>(loc, alloc, tmpName, shape,
|
|
lenParams, declAttrs);
|
|
if (mold.isPolymorphic()) {
|
|
int rank = mold.getRank();
|
|
// TODO: should probably read rank from the mold.
|
|
if (rank < 0)
|
|
TODO(loc, "create temporary for assumed rank polymorphic");
|
|
fir::runtime::genAllocatableApplyMold(builder, loc, alloc,
|
|
mold.getFirBase(), rank);
|
|
}
|
|
|
|
return {hlfir::Entity{declareOp.getBase()}, isHeapAlloc};
|
|
}
|
|
|
|
static std::pair<hlfir::Entity, mlir::Value>
|
|
createArrayTemp(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
mlir::Type exprType, mlir::Value shape,
|
|
mlir::ValueRange extents, mlir::ValueRange lenParams) {
|
|
mlir::Type sequenceType = hlfir::getFortranElementOrSequenceType(exprType);
|
|
llvm::StringRef tmpName{".tmp.array"};
|
|
mlir::Value allocmem = builder.createHeapTemporary(loc, sequenceType, tmpName,
|
|
extents, lenParams);
|
|
auto declareOp =
|
|
builder.create<hlfir::DeclareOp>(loc, allocmem, tmpName, shape, lenParams,
|
|
fir::FortranVariableFlagsAttr{});
|
|
mlir::Value trueVal = builder.createBool(loc, true);
|
|
return {hlfir::Entity{declareOp.getBase()}, trueVal};
|
|
}
|
|
|
|
struct AsExprOpConversion : public mlir::OpConversionPattern<hlfir::AsExprOp> {
|
|
using mlir::OpConversionPattern<hlfir::AsExprOp>::OpConversionPattern;
|
|
explicit AsExprOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::AsExprOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::AsExprOp asExpr, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = asExpr->getLoc();
|
|
auto module = asExpr->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, module);
|
|
if (asExpr.isMove()) {
|
|
// Move variable storage for the hlfir.expr buffer.
|
|
mlir::Value bufferizedExpr = packageBufferizedExpr(
|
|
loc, builder, hlfir::Entity{adaptor.getVar()}, adaptor.getMustFree());
|
|
rewriter.replaceOp(asExpr, bufferizedExpr);
|
|
return mlir::success();
|
|
}
|
|
// Otherwise, create a copy in a new buffer.
|
|
hlfir::Entity source = hlfir::Entity{adaptor.getVar()};
|
|
auto [temp, cleanup] = createTempFromMold(loc, builder, source);
|
|
builder.create<hlfir::AssignOp>(loc, source, temp, temp.isAllocatable(),
|
|
/*keep_lhs_length_if_realloc=*/false,
|
|
/*temporary_lhs=*/true);
|
|
mlir::Value bufferizedExpr =
|
|
packageBufferizedExpr(loc, builder, temp, cleanup);
|
|
rewriter.replaceOp(asExpr, bufferizedExpr);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
struct ShapeOfOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::ShapeOfOp> {
|
|
using mlir::OpConversionPattern<hlfir::ShapeOfOp>::OpConversionPattern;
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::ShapeOfOp shapeOf, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = shapeOf.getLoc();
|
|
mlir::ModuleOp mod = shapeOf->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, mod);
|
|
|
|
mlir::Value shape;
|
|
hlfir::Entity bufferizedExpr{getBufferizedExprStorage(adaptor.getExpr())};
|
|
if (bufferizedExpr.isVariable()) {
|
|
shape = hlfir::genShape(loc, builder, bufferizedExpr);
|
|
} else {
|
|
// everything else failed so try to create a shape from static type info
|
|
hlfir::ExprType exprTy =
|
|
adaptor.getExpr().getType().dyn_cast_or_null<hlfir::ExprType>();
|
|
if (exprTy)
|
|
shape = hlfir::genExprShape(builder, loc, exprTy);
|
|
}
|
|
// expected to never happen
|
|
if (!shape)
|
|
return emitError(loc,
|
|
"Unresolvable hlfir.shape_of where extents are unknown");
|
|
|
|
rewriter.replaceOp(shapeOf, shape);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
struct ApplyOpConversion : public mlir::OpConversionPattern<hlfir::ApplyOp> {
|
|
using mlir::OpConversionPattern<hlfir::ApplyOp>::OpConversionPattern;
|
|
explicit ApplyOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::ApplyOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::ApplyOp apply, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = apply->getLoc();
|
|
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
|
|
mlir::Type resultType = hlfir::getVariableElementType(bufferizedExpr);
|
|
mlir::Value result = rewriter.create<hlfir::DesignateOp>(
|
|
loc, resultType, bufferizedExpr, adaptor.getIndices(),
|
|
adaptor.getTypeparams());
|
|
if (fir::isa_trivial(apply.getType())) {
|
|
result = rewriter.create<fir::LoadOp>(loc, result);
|
|
} else {
|
|
auto module = apply->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
result =
|
|
packageBufferizedExpr(loc, builder, hlfir::Entity{result}, false);
|
|
}
|
|
rewriter.replaceOp(apply, result);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
struct AssignOpConversion : public mlir::OpConversionPattern<hlfir::AssignOp> {
|
|
using mlir::OpConversionPattern<hlfir::AssignOp>::OpConversionPattern;
|
|
explicit AssignOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::AssignOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::AssignOp assign, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
llvm::SmallVector<mlir::Value> newOperands;
|
|
for (mlir::Value operand : adaptor.getOperands())
|
|
newOperands.push_back(getBufferizedExprStorage(operand));
|
|
rewriter.startRootUpdate(assign);
|
|
assign->setOperands(newOperands);
|
|
rewriter.finalizeRootUpdate(assign);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
struct ConcatOpConversion : public mlir::OpConversionPattern<hlfir::ConcatOp> {
|
|
using mlir::OpConversionPattern<hlfir::ConcatOp>::OpConversionPattern;
|
|
explicit ConcatOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::ConcatOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::ConcatOp concat, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = concat->getLoc();
|
|
auto module = concat->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
assert(adaptor.getStrings().size() >= 2 &&
|
|
"must have at least two strings operands");
|
|
if (adaptor.getStrings().size() > 2)
|
|
TODO(loc, "codegen of optimized chained concatenation of more than two "
|
|
"strings");
|
|
hlfir::Entity lhs = getBufferizedExprStorage(adaptor.getStrings()[0]);
|
|
hlfir::Entity rhs = getBufferizedExprStorage(adaptor.getStrings()[1]);
|
|
auto [lhsExv, c1] = hlfir::translateToExtendedValue(loc, builder, lhs);
|
|
auto [rhsExv, c2] = hlfir::translateToExtendedValue(loc, builder, rhs);
|
|
assert(!c1 && !c2 && "expected variables");
|
|
fir::ExtendedValue res =
|
|
fir::factory::CharacterExprHelper{builder, loc}.createConcatenate(
|
|
*lhsExv.getCharBox(), *rhsExv.getCharBox());
|
|
// Ensure the memory type is the same as the result type.
|
|
mlir::Type addrType = fir::ReferenceType::get(
|
|
hlfir::getFortranElementType(concat.getResult().getType()));
|
|
mlir::Value cast = builder.createConvert(loc, addrType, fir::getBase(res));
|
|
res = fir::substBase(res, cast);
|
|
hlfir::Entity hlfirTempRes =
|
|
hlfir::Entity{hlfir::genDeclare(loc, builder, res, "tmp",
|
|
fir::FortranVariableFlagsAttr{})
|
|
.getBase()};
|
|
mlir::Value bufferizedExpr =
|
|
packageBufferizedExpr(loc, builder, hlfirTempRes, false);
|
|
rewriter.replaceOp(concat, bufferizedExpr);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
struct SetLengthOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::SetLengthOp> {
|
|
using mlir::OpConversionPattern<hlfir::SetLengthOp>::OpConversionPattern;
|
|
explicit SetLengthOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::SetLengthOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::SetLengthOp setLength, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = setLength->getLoc();
|
|
auto module = setLength->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
// Create a temp with the new length.
|
|
hlfir::Entity string = getBufferizedExprStorage(adaptor.getString());
|
|
auto charType = hlfir::getFortranElementType(setLength.getType());
|
|
llvm::StringRef tmpName{".tmp"};
|
|
llvm::SmallVector<mlir::Value, 1> lenParams{adaptor.getLength()};
|
|
auto alloca = builder.createTemporary(loc, charType, tmpName,
|
|
/*shape=*/std::nullopt, lenParams);
|
|
auto declareOp = builder.create<hlfir::DeclareOp>(
|
|
loc, alloca, tmpName, /*shape=*/mlir::Value{}, lenParams,
|
|
fir::FortranVariableFlagsAttr{});
|
|
hlfir::Entity temp{declareOp.getBase()};
|
|
// Assign string value to the created temp.
|
|
builder.create<hlfir::AssignOp>(loc, string, temp,
|
|
/*realloc=*/false,
|
|
/*keep_lhs_length_if_realloc=*/false,
|
|
/*temporary_lhs=*/true);
|
|
mlir::Value bufferizedExpr =
|
|
packageBufferizedExpr(loc, builder, temp, false);
|
|
rewriter.replaceOp(setLength, bufferizedExpr);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
struct GetLengthOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::GetLengthOp> {
|
|
using mlir::OpConversionPattern<hlfir::GetLengthOp>::OpConversionPattern;
|
|
explicit GetLengthOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::GetLengthOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::GetLengthOp getLength, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = getLength->getLoc();
|
|
auto module = getLength->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
|
|
mlir::Value length = hlfir::genCharLength(loc, builder, bufferizedExpr);
|
|
if (!length)
|
|
return rewriter.notifyMatchFailure(
|
|
getLength, "could not deduce length from GetLengthOp operand");
|
|
rewriter.replaceOp(getLength, length);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
/// The current hlfir.associate lowering does not handle multiple uses of a
|
|
/// non-trivial expression value because it generates the cleanup for the
|
|
/// expression bufferization at hlfir.end_associate. If there was more than one
|
|
/// hlfir.end_associate, it would be cleaned up multiple times, perhaps before
|
|
/// one of the other uses.
|
|
static bool allOtherUsesAreSafeForAssociate(mlir::Value value,
|
|
mlir::Operation *currentUse,
|
|
mlir::Operation *endAssociate) {
|
|
for (mlir::Operation *useOp : value.getUsers())
|
|
if (!mlir::isa<hlfir::DestroyOp>(useOp) && useOp != currentUse) {
|
|
// hlfir.shape_of and hlfir.get_length will not disrupt cleanup so it is
|
|
// safe for hlfir.associate. These operations might read from the box and
|
|
// so they need to come before the hflir.end_associate (which may
|
|
// deallocate).
|
|
if (mlir::isa<hlfir::ShapeOfOp>(useOp) ||
|
|
mlir::isa<hlfir::GetLengthOp>(useOp)) {
|
|
if (!endAssociate)
|
|
continue;
|
|
// not known to occur in practice:
|
|
if (useOp->getBlock() != endAssociate->getBlock())
|
|
TODO(endAssociate->getLoc(), "Associate split over multiple blocks");
|
|
if (useOp->isBeforeInBlock(endAssociate))
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void eraseAllUsesInDestroys(mlir::Value value,
|
|
mlir::ConversionPatternRewriter &rewriter) {
|
|
for (mlir::Operation *useOp : value.getUsers())
|
|
if (mlir::isa<hlfir::DestroyOp>(useOp))
|
|
rewriter.eraseOp(useOp);
|
|
}
|
|
|
|
struct AssociateOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::AssociateOp> {
|
|
using mlir::OpConversionPattern<hlfir::AssociateOp>::OpConversionPattern;
|
|
explicit AssociateOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::AssociateOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::AssociateOp associate, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = associate->getLoc();
|
|
auto module = associate->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
mlir::Value bufferizedExpr = getBufferizedExprStorage(adaptor.getSource());
|
|
const bool isTrivialValue = fir::isa_trivial(bufferizedExpr.getType());
|
|
|
|
auto getEndAssociate =
|
|
[](hlfir::AssociateOp associate) -> mlir::Operation * {
|
|
for (mlir::Operation *useOp : associate->getUsers())
|
|
if (mlir::isa<hlfir::EndAssociateOp>(useOp))
|
|
return useOp;
|
|
// happens in some hand coded mlir in tests
|
|
return nullptr;
|
|
};
|
|
|
|
auto replaceWith = [&](mlir::Value hlfirVar, mlir::Value firVar,
|
|
mlir::Value flag) {
|
|
// 0-dim variables may need special handling:
|
|
// %0 = hlfir.as_expr %x move %true :
|
|
// (!fir.box<!fir.heap<!fir.type<_T{y:i32}>>>, i1) ->
|
|
// !hlfir.expr<!fir.type<_T{y:i32}>>
|
|
// %1:3 = hlfir.associate %0 {uniq_name = "adapt.valuebyref"} :
|
|
// (!hlfir.expr<!fir.type<_T{y:i32}>>) ->
|
|
// (!fir.ref<!fir.type<_T{y:i32}>>,
|
|
// !fir.ref<!fir.type<_T{y:i32}>>,
|
|
// i1)
|
|
//
|
|
// !fir.box<!fir.heap<!fir.type<_T{y:i32}>>> value must be
|
|
// propagated as the box address !fir.ref<!fir.type<_T{y:i32}>>.
|
|
auto adjustVar = [&](mlir::Value sourceVar, mlir::Type assocType) {
|
|
if (mlir::isa<fir::ReferenceType>(sourceVar.getType()) &&
|
|
mlir::isa<fir::ClassType>(
|
|
fir::unwrapRefType(sourceVar.getType()))) {
|
|
// Association of a polymorphic value.
|
|
sourceVar = builder.create<fir::LoadOp>(loc, sourceVar);
|
|
assert(mlir::isa<fir::ClassType>(sourceVar.getType()) &&
|
|
fir::isAllocatableType(sourceVar.getType()));
|
|
assert(sourceVar.getType() == assocType);
|
|
} else if ((sourceVar.getType().isa<fir::BaseBoxType>() &&
|
|
!assocType.isa<fir::BaseBoxType>()) ||
|
|
((sourceVar.getType().isa<fir::BoxCharType>() &&
|
|
!assocType.isa<fir::BoxCharType>()))) {
|
|
sourceVar = builder.create<fir::BoxAddrOp>(loc, assocType, sourceVar);
|
|
} else {
|
|
sourceVar = builder.createConvert(loc, assocType, sourceVar);
|
|
}
|
|
return sourceVar;
|
|
};
|
|
|
|
mlir::Type associateHlfirVarType = associate.getResultTypes()[0];
|
|
hlfirVar = adjustVar(hlfirVar, associateHlfirVarType);
|
|
associate.getResult(0).replaceAllUsesWith(hlfirVar);
|
|
|
|
mlir::Type associateFirVarType = associate.getResultTypes()[1];
|
|
firVar = adjustVar(firVar, associateFirVarType);
|
|
associate.getResult(1).replaceAllUsesWith(firVar);
|
|
associate.getResult(2).replaceAllUsesWith(flag);
|
|
rewriter.replaceOp(associate, {hlfirVar, firVar, flag});
|
|
};
|
|
|
|
// If this is the last use of the expression value and this is an hlfir.expr
|
|
// that was bufferized, re-use the storage.
|
|
// Otherwise, create a temp and assign the storage to it.
|
|
if (!isTrivialValue && allOtherUsesAreSafeForAssociate(
|
|
adaptor.getSource(), associate.getOperation(),
|
|
getEndAssociate(associate))) {
|
|
// Re-use hlfir.expr buffer if this is the only use of the hlfir.expr
|
|
// outside of the hlfir.destroy. Take on the cleaning-up responsibility
|
|
// for the related hlfir.end_associate, and erase the hlfir.destroy (if
|
|
// any).
|
|
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getSource());
|
|
mlir::Value firBase = hlfir::Entity{bufferizedExpr}.getFirBase();
|
|
replaceWith(bufferizedExpr, firBase, mustFree);
|
|
eraseAllUsesInDestroys(associate.getSource(), rewriter);
|
|
return mlir::success();
|
|
}
|
|
if (isTrivialValue) {
|
|
auto temp = builder.createTemporary(loc, bufferizedExpr.getType(),
|
|
associate.getUniqName());
|
|
builder.create<fir::StoreOp>(loc, bufferizedExpr, temp);
|
|
mlir::Value mustFree = builder.createBool(loc, false);
|
|
replaceWith(temp, temp, mustFree);
|
|
return mlir::success();
|
|
}
|
|
// non-trivial value with more than one use. We will have to make a copy and
|
|
// use that
|
|
hlfir::Entity source = hlfir::Entity{adaptor.getSource()};
|
|
auto [temp, cleanup] = createTempFromMold(loc, builder, source);
|
|
builder.create<hlfir::AssignOp>(loc, source, temp, temp.isAllocatable(),
|
|
/*keep_lhs_length_if_realloc=*/false,
|
|
/*temporary_lhs=*/true);
|
|
mlir::Value bufferTuple =
|
|
packageBufferizedExpr(loc, builder, temp, cleanup);
|
|
bufferizedExpr = getBufferizedExprStorage(bufferTuple);
|
|
replaceWith(bufferizedExpr, hlfir::Entity{bufferizedExpr}.getFirBase(),
|
|
getBufferizedExprMustFreeFlag(bufferTuple));
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
static void genFreeIfMustFree(mlir::Location loc, fir::FirOpBuilder &builder,
|
|
mlir::Value var, mlir::Value mustFree) {
|
|
auto genFree = [&]() {
|
|
// fir::FreeMemOp operand type must be a fir::HeapType.
|
|
mlir::Type heapType = fir::HeapType::get(
|
|
hlfir::getFortranElementOrSequenceType(var.getType()));
|
|
if (mlir::isa<fir::ReferenceType>(var.getType()) &&
|
|
mlir::isa<fir::ClassType>(fir::unwrapRefType(var.getType()))) {
|
|
// A temporary for a polymorphic expression is represented
|
|
// via an allocatable. Variable type in this case
|
|
// is !fir.ref<!fir.class<!fir.heap<!fir.type<>>>>.
|
|
// We need to free the allocatable data, not the box
|
|
// that is allocated on the stack.
|
|
var = builder.create<fir::LoadOp>(loc, var);
|
|
assert(mlir::isa<fir::ClassType>(var.getType()) &&
|
|
fir::isAllocatableType(var.getType()));
|
|
var = builder.create<fir::BoxAddrOp>(loc, heapType, var);
|
|
} else if (var.getType().isa<fir::BaseBoxType, fir::BoxCharType>()) {
|
|
var = builder.create<fir::BoxAddrOp>(loc, heapType, var);
|
|
} else if (!var.getType().isa<fir::HeapType>()) {
|
|
var = builder.create<fir::ConvertOp>(loc, heapType, var);
|
|
}
|
|
builder.create<fir::FreeMemOp>(loc, var);
|
|
};
|
|
if (auto cstMustFree = fir::getIntIfConstant(mustFree)) {
|
|
if (*cstMustFree != 0)
|
|
genFree();
|
|
// else, mustFree is false, nothing to do.
|
|
return;
|
|
}
|
|
builder.genIfThen(loc, mustFree).genThen(genFree).end();
|
|
}
|
|
|
|
struct EndAssociateOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::EndAssociateOp> {
|
|
using mlir::OpConversionPattern<hlfir::EndAssociateOp>::OpConversionPattern;
|
|
explicit EndAssociateOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::EndAssociateOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::EndAssociateOp endAssociate, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = endAssociate->getLoc();
|
|
auto module = endAssociate->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
genFreeIfMustFree(loc, builder, adaptor.getVar(), adaptor.getMustFree());
|
|
rewriter.eraseOp(endAssociate);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
struct DestroyOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::DestroyOp> {
|
|
using mlir::OpConversionPattern<hlfir::DestroyOp>::OpConversionPattern;
|
|
explicit DestroyOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::DestroyOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::DestroyOp destroy, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
// If expr was bufferized on the heap, now is time to deallocate the buffer.
|
|
mlir::Location loc = destroy->getLoc();
|
|
hlfir::Entity bufferizedExpr = getBufferizedExprStorage(adaptor.getExpr());
|
|
if (!fir::isa_trivial(bufferizedExpr.getType())) {
|
|
auto module = destroy->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getExpr());
|
|
mlir::Value firBase = bufferizedExpr.getFirBase();
|
|
genFreeIfMustFree(loc, builder, firBase, mustFree);
|
|
}
|
|
rewriter.eraseOp(destroy);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
struct NoReassocOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::NoReassocOp> {
|
|
using mlir::OpConversionPattern<hlfir::NoReassocOp>::OpConversionPattern;
|
|
explicit NoReassocOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::NoReassocOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::NoReassocOp noreassoc, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = noreassoc->getLoc();
|
|
auto module = noreassoc->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
mlir::Value bufferizedExpr = getBufferizedExprStorage(adaptor.getVal());
|
|
mlir::Value result =
|
|
builder.create<hlfir::NoReassocOp>(loc, bufferizedExpr);
|
|
|
|
if (!fir::isa_trivial(bufferizedExpr.getType())) {
|
|
// NoReassocOp should not be needed on the mustFree path.
|
|
mlir::Value mustFree = getBufferizedExprMustFreeFlag(adaptor.getVal());
|
|
result =
|
|
packageBufferizedExpr(loc, builder, hlfir::Entity{result}, mustFree);
|
|
}
|
|
rewriter.replaceOp(noreassoc, result);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
/// Was \p value created in the mlir block where \p builder is currently set ?
|
|
static bool wasCreatedInCurrentBlock(mlir::Value value,
|
|
fir::FirOpBuilder &builder) {
|
|
if (mlir::Operation *op = value.getDefiningOp())
|
|
return op->getBlock() == builder.getBlock();
|
|
return false;
|
|
}
|
|
|
|
/// This Listener allows setting both the builder and the rewriter as
|
|
/// listeners. This is required when a pattern uses a firBuilder helper that
|
|
/// may create illegal operations that will need to be translated and requires
|
|
/// notifying the rewriter.
|
|
struct HLFIRListener : public mlir::OpBuilder::Listener {
|
|
HLFIRListener(fir::FirOpBuilder &builder,
|
|
mlir::ConversionPatternRewriter &rewriter)
|
|
: builder{builder}, rewriter{rewriter} {}
|
|
void notifyOperationInserted(mlir::Operation *op) override {
|
|
builder.notifyOperationInserted(op);
|
|
rewriter.notifyOperationInserted(op);
|
|
}
|
|
virtual void notifyBlockCreated(mlir::Block *block) override {
|
|
builder.notifyBlockCreated(block);
|
|
rewriter.notifyBlockCreated(block);
|
|
}
|
|
fir::FirOpBuilder &builder;
|
|
mlir::ConversionPatternRewriter &rewriter;
|
|
};
|
|
|
|
struct ElementalOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::ElementalOp> {
|
|
using mlir::OpConversionPattern<hlfir::ElementalOp>::OpConversionPattern;
|
|
explicit ElementalOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::ElementalOp>{ctx} {
|
|
// This pattern recursively converts nested ElementalOp's
|
|
// by cloning and then converting them, so we have to allow
|
|
// for recursive pattern application. The recursion is bounded
|
|
// by the nesting level of ElementalOp's.
|
|
setHasBoundedRewriteRecursion();
|
|
}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::ElementalOp elemental, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = elemental->getLoc();
|
|
auto module = elemental->getParentOfType<mlir::ModuleOp>();
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
// The body of the elemental op may contain operation that will require
|
|
// to be translated. Notify the rewriter about the cloned operations.
|
|
HLFIRListener listener{builder, rewriter};
|
|
builder.setListener(&listener);
|
|
|
|
mlir::Value shape = adaptor.getShape();
|
|
auto extents = hlfir::getIndexExtents(loc, builder, shape);
|
|
auto [temp, cleanup] =
|
|
createArrayTemp(loc, builder, elemental.getType(), shape, extents,
|
|
adaptor.getTypeparams());
|
|
// Generate a loop nest looping around the fir.elemental shape and clone
|
|
// fir.elemental region inside the inner loop.
|
|
hlfir::LoopNest loopNest =
|
|
hlfir::genLoopNest(loc, builder, extents, !elemental.isOrdered());
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
|
|
auto yield = hlfir::inlineElementalOp(loc, builder, elemental,
|
|
loopNest.oneBasedIndices);
|
|
hlfir::Entity elementValue(yield.getElementValue());
|
|
// Skip final AsExpr if any. It would create an element temporary,
|
|
// which is no needed since the element will be assigned right away in
|
|
// the array temporary. An hlfir.as_expr may have been added if the
|
|
// elemental is a "view" over a variable (e.g parentheses or transpose).
|
|
if (auto asExpr = elementValue.getDefiningOp<hlfir::AsExprOp>()) {
|
|
if (asExpr->hasOneUse() && !asExpr.isMove()) {
|
|
elementValue = hlfir::Entity{asExpr.getVar()};
|
|
rewriter.eraseOp(asExpr);
|
|
}
|
|
}
|
|
rewriter.eraseOp(yield);
|
|
// Assign the element value to the temp element for this iteration.
|
|
auto tempElement =
|
|
hlfir::getElementAt(loc, builder, temp, loopNest.oneBasedIndices);
|
|
builder.create<hlfir::AssignOp>(loc, elementValue, tempElement,
|
|
/*realloc=*/false,
|
|
/*keep_lhs_length_if_realloc=*/false,
|
|
/*temporary_lhs=*/true);
|
|
// hlfir.yield_element implicitly marks the end-of-life its operand if
|
|
// it is an expression created in the hlfir.elemental (since it is its
|
|
// last use and an hlfir.destroy could not be created afterwards)
|
|
// Now that this node has been removed and the expression has been used in
|
|
// the assign, insert an hlfir.destroy to mark the expression end-of-life.
|
|
// If the expression creation allocated a buffer on the heap inside the
|
|
// loop, this will ensure the buffer properly deallocated.
|
|
if (elementValue.getType().isa<hlfir::ExprType>() &&
|
|
wasCreatedInCurrentBlock(elementValue, builder))
|
|
builder.create<hlfir::DestroyOp>(loc, elementValue);
|
|
builder.restoreInsertionPoint(insPt);
|
|
|
|
mlir::Value bufferizedExpr =
|
|
packageBufferizedExpr(loc, builder, temp, cleanup);
|
|
rewriter.replaceOp(elemental, bufferizedExpr);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
struct CharExtremumOpConversion
|
|
: public mlir::OpConversionPattern<hlfir::CharExtremumOp> {
|
|
using mlir::OpConversionPattern<hlfir::CharExtremumOp>::OpConversionPattern;
|
|
explicit CharExtremumOpConversion(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<hlfir::CharExtremumOp>{ctx} {}
|
|
mlir::LogicalResult
|
|
matchAndRewrite(hlfir::CharExtremumOp char_extremum, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = char_extremum->getLoc();
|
|
auto module = char_extremum->getParentOfType<mlir::ModuleOp>();
|
|
auto predicate = char_extremum.getPredicate();
|
|
bool predIsMin =
|
|
predicate == hlfir::CharExtremumPredicate::min ? true : false;
|
|
fir::FirOpBuilder builder(rewriter, fir::getKindMapping(module));
|
|
assert(adaptor.getStrings().size() >= 2 &&
|
|
"must have at least two strings operands");
|
|
auto numOperands = adaptor.getStrings().size();
|
|
|
|
std::vector<hlfir::Entity> chars;
|
|
std::vector<
|
|
std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>>>
|
|
pairs;
|
|
llvm::SmallVector<fir::CharBoxValue> opCBVs;
|
|
for (size_t i = 0; i < numOperands; ++i) {
|
|
chars.emplace_back(getBufferizedExprStorage(adaptor.getStrings()[i]));
|
|
pairs.emplace_back(
|
|
hlfir::translateToExtendedValue(loc, builder, chars[i]));
|
|
assert(!pairs[i].second && "expected variables");
|
|
opCBVs.emplace_back(*pairs[i].first.getCharBox());
|
|
}
|
|
|
|
fir::ExtendedValue res =
|
|
fir::factory::CharacterExprHelper{builder, loc}.createCharExtremum(
|
|
predIsMin, opCBVs);
|
|
mlir::Type addrType = fir::ReferenceType::get(
|
|
hlfir::getFortranElementType(char_extremum.getResult().getType()));
|
|
mlir::Value cast = builder.createConvert(loc, addrType, fir::getBase(res));
|
|
res = fir::substBase(res, cast);
|
|
hlfir::Entity hlfirTempRes =
|
|
hlfir::Entity{hlfir::genDeclare(loc, builder, res, ".tmp.char_extremum",
|
|
fir::FortranVariableFlagsAttr{})
|
|
.getBase()};
|
|
mlir::Value bufferizedExpr =
|
|
packageBufferizedExpr(loc, builder, hlfirTempRes, false);
|
|
rewriter.replaceOp(char_extremum, bufferizedExpr);
|
|
return mlir::success();
|
|
}
|
|
};
|
|
|
|
class BufferizeHLFIR : public hlfir::impl::BufferizeHLFIRBase<BufferizeHLFIR> {
|
|
public:
|
|
void runOnOperation() override {
|
|
// TODO: make this a pass operating on FuncOp. The issue is that
|
|
// FirOpBuilder helpers may generate new FuncOp because of runtime/llvm
|
|
// intrinsics calls creation. This may create race conflict if the pass is
|
|
// scheduled on FuncOp. A solution could be to provide an optional mutex
|
|
// when building a FirOpBuilder and locking around FuncOp and GlobalOp
|
|
// creation, but this needs a bit more thinking, so at this point the pass
|
|
// is scheduled on the moduleOp.
|
|
auto module = this->getOperation();
|
|
auto *context = &getContext();
|
|
mlir::RewritePatternSet patterns(context);
|
|
patterns.insert<ApplyOpConversion, AsExprOpConversion, AssignOpConversion,
|
|
AssociateOpConversion, CharExtremumOpConversion,
|
|
ConcatOpConversion, DestroyOpConversion,
|
|
ElementalOpConversion, EndAssociateOpConversion,
|
|
NoReassocOpConversion, SetLengthOpConversion,
|
|
ShapeOfOpConversion, GetLengthOpConversion>(context);
|
|
mlir::ConversionTarget target(*context);
|
|
// Note that YieldElementOp is not marked as an illegal operation.
|
|
// It must be erased by its parent converter and there is no explicit
|
|
// conversion pattern to YieldElementOp itself. If any YieldElementOp
|
|
// survives this pass, the verifier will detect it because it has to be
|
|
// a child of ElementalOp and ElementalOp's are explicitly illegal.
|
|
target.addIllegalOp<hlfir::ApplyOp, hlfir::AssociateOp, hlfir::ElementalOp,
|
|
hlfir::EndAssociateOp, hlfir::SetLengthOp>();
|
|
|
|
target.markUnknownOpDynamicallyLegal([](mlir::Operation *op) {
|
|
return llvm::all_of(
|
|
op->getResultTypes(),
|
|
[](mlir::Type ty) { return !ty.isa<hlfir::ExprType>(); }) &&
|
|
llvm::all_of(op->getOperandTypes(), [](mlir::Type ty) {
|
|
return !ty.isa<hlfir::ExprType>();
|
|
});
|
|
});
|
|
if (mlir::failed(
|
|
mlir::applyFullConversion(module, target, std::move(patterns)))) {
|
|
mlir::emitError(mlir::UnknownLoc::get(context),
|
|
"failure in HLFIR bufferization pass");
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<mlir::Pass> hlfir::createBufferizeHLFIRPass() {
|
|
return std::make_unique<BufferizeHLFIR>();
|
|
}
|