Files
llvm/mlir/lib/Transforms/ComposeAffineMaps.cpp
Uday Bondhugula 8201e19e3d Introduce memref bound checking.
Introduce analysis to check memref accesses (in MLFunctions) for out of bound
ones. It works as follows:

$ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir

/tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1
      %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
           ^
/tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1
      %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
           ^
/tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2
      %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
           ^
/tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2
      %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
           ^
/tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1
      %y = load %B[%idy] : memref<128 x i32>
           ^
/tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1
      %y = load %B[%idy] : memref<128 x i32>
           ^
#map0 = (d0, d1) -> (d0, d1)
#map1 = (d0, d1) -> (d0 * 128 - d1)
mlfunc @test() {
  %0 = alloc() : memref<9x9xi32>
  %1 = alloc() : memref<128xi32>
  for %i0 = -1 to 9 {
    for %i1 = -1 to 9 {
      %2 = affine_apply #map0(%i0, %i1)
      %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32>
      %4 = affine_apply #map1(%i0, %i1)
      %5 = load %1[%4] : memref<128xi32>
    }
  }
  return
}

- Improves productivity while manually / semi-automatically developing MLIR for
  testing / prototyping; also provides an indirect way to catch errors in
  transformations.

- This pass is an easy way to test the underlying affine analysis
  machinery including low level routines.

Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256.

While on this:

- create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/

- fix a bug in AffineAnalysis.cpp::toAffineExpr

TODO: extend to non-constant loop bounds (straightforward). Will transparently
work for all accesses once floordiv, mod, ceildiv are supported in the
AffineMap -> FlatAffineConstraints conversion.
PiperOrigin-RevId: 219397961
2019-03-29 13:46:08 -07:00

95 lines
3.2 KiB
C++

//===- ComposeAffineMaps.cpp - MLIR Affine Transform Class-----*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a testing pass which composes affine maps from
// AffineApplyOps in an MLFunction, by forward subtituting results from an
// AffineApplyOp into any of its users which are also AffineApplyOps.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/StmtVisitor.h"
#include "mlir/Pass.h"
#include "mlir/StandardOps/StandardOps.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/Support/CommandLine.h"
using namespace mlir;
namespace {
// ComposeAffineMaps walks stmt blocks in an MLFunction, and for each
// AffineApplyOp, forward substitutes its results into any users which are
// also AffineApplyOps. After forward subtituting its results, AffineApplyOps
// with no remaining uses are collected and erased after the walk.
// TODO(andydavis) Remove this when Chris adds instruction combiner pass.
struct ComposeAffineMaps : public FunctionPass, StmtWalker<ComposeAffineMaps> {
std::vector<OperationStmt *> affineApplyOpsToErase;
explicit ComposeAffineMaps() {}
using StmtListType = llvm::iplist<Statement>;
void walk(StmtListType::iterator Start, StmtListType::iterator End);
void visitOperationStmt(OperationStmt *stmt);
PassResult runOnMLFunction(MLFunction *f) override;
using StmtWalker<ComposeAffineMaps>::walk;
};
} // end anonymous namespace
FunctionPass *mlir::createComposeAffineMapsPass() {
return new ComposeAffineMaps();
}
void ComposeAffineMaps::walk(StmtListType::iterator Start,
StmtListType::iterator End) {
while (Start != End) {
walk(&(*Start));
// Increment iterator after walk as visit function can mutate stmt list
// ahead of 'Start'.
++Start;
}
}
void ComposeAffineMaps::visitOperationStmt(OperationStmt *opStmt) {
if (auto affineApplyOp = opStmt->dyn_cast<AffineApplyOp>()) {
forwardSubstitute(affineApplyOp);
bool allUsesEmpty = true;
for (auto *result : affineApplyOp->getOperation()->getResults()) {
if (!result->use_empty()) {
allUsesEmpty = false;
break;
}
}
if (allUsesEmpty) {
affineApplyOpsToErase.push_back(opStmt);
}
}
}
PassResult ComposeAffineMaps::runOnMLFunction(MLFunction *f) {
affineApplyOpsToErase.clear();
walk(f);
for (auto *opStmt : affineApplyOpsToErase) {
opStmt->erase();
}
return success();
}