mirror of
https://github.com/intel/llvm.git
synced 2026-01-18 07:57:36 +08:00
Print a statement's instruction on dump() regardless of -polly-print-instructions. dump() is supposed to be used in the debugger only and never in regression tests. While debugging, get all the information we have and we are not bound to break anything. For non-dump purposes of print, forward the setting of -polly-print-instructions as parameters. Some calls to print() had to be changed because the PollyPrintInstructions setting is only available in ScopInfo.cpp. In ScheduleOptimizer.cpp, dump() was used in regression tests. That's not what dump() is for. The print parameter "PrintInstructions" will also be useful for an explicit print SCoP pass in a future patch. llvm-svn: 308746
475 lines
15 KiB
C++
475 lines
15 KiB
C++
//===------ Simplify.cpp ----------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Simplify a SCoP by removing unnecessary statements and accesses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/Simplify.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/ScopPass.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/ISLOStream.h"
|
|
#include "polly/Support/VirtualInstruction.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#define DEBUG_TYPE "polly-simplify"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
namespace {
|
|
|
|
STATISTIC(ScopsProcessed, "Number of SCoPs processed");
|
|
STATISTIC(ScopsModified, "Number of SCoPs simplified");
|
|
|
|
STATISTIC(PairUnequalAccRels, "Number of Load-Store pairs NOT removed because "
|
|
"of different access relations");
|
|
STATISTIC(InBetweenStore, "Number of Load-Store pairs NOT removed because "
|
|
"there is another store between them");
|
|
STATISTIC(TotalOverwritesRemoved, "Number of removed overwritten writes");
|
|
STATISTIC(TotalRedundantWritesRemoved,
|
|
"Number of writes of same value removed in any SCoP");
|
|
STATISTIC(TotalDeadAccessesRemoved, "Number of dead accesses removed");
|
|
STATISTIC(TotalDeadInstructionsRemoved,
|
|
"Number of unused instructions removed");
|
|
STATISTIC(TotalStmtsRemoved, "Number of statements removed in any SCoP");
|
|
|
|
static bool isImplicitRead(MemoryAccess *MA) {
|
|
return MA->isRead() && MA->isOriginalScalarKind();
|
|
}
|
|
|
|
static bool isExplicitAccess(MemoryAccess *MA) {
|
|
return MA->isOriginalArrayKind();
|
|
}
|
|
|
|
static bool isImplicitWrite(MemoryAccess *MA) {
|
|
return MA->isWrite() && MA->isOriginalScalarKind();
|
|
}
|
|
|
|
/// Return a vector that contains MemoryAccesses in the order in
|
|
/// which they are executed.
|
|
///
|
|
/// The order is:
|
|
/// - Implicit reads (BlockGenerator::generateScalarLoads)
|
|
/// - Explicit reads and writes (BlockGenerator::generateArrayLoad,
|
|
/// BlockGenerator::generateArrayStore)
|
|
/// - In block statements, the accesses are in order in which their
|
|
/// instructions are executed.
|
|
/// - In region statements, that order of execution is not predictable at
|
|
/// compile-time.
|
|
/// - Implicit writes (BlockGenerator::generateScalarStores)
|
|
/// The order in which implicit writes are executed relative to each other is
|
|
/// undefined.
|
|
static SmallVector<MemoryAccess *, 32> getAccessesInOrder(ScopStmt &Stmt) {
|
|
|
|
SmallVector<MemoryAccess *, 32> Accesses;
|
|
|
|
for (MemoryAccess *MemAcc : Stmt)
|
|
if (isImplicitRead(MemAcc))
|
|
Accesses.push_back(MemAcc);
|
|
|
|
for (MemoryAccess *MemAcc : Stmt)
|
|
if (isExplicitAccess(MemAcc))
|
|
Accesses.push_back(MemAcc);
|
|
|
|
for (MemoryAccess *MemAcc : Stmt)
|
|
if (isImplicitWrite(MemAcc))
|
|
Accesses.push_back(MemAcc);
|
|
|
|
return Accesses;
|
|
}
|
|
|
|
class Simplify : public ScopPass {
|
|
private:
|
|
/// The last/current SCoP that is/has been processed.
|
|
Scop *S;
|
|
|
|
/// Number of writes that are overwritten anyway.
|
|
int OverwritesRemoved = 0;
|
|
|
|
/// Number of redundant writes removed from this SCoP.
|
|
int RedundantWritesRemoved = 0;
|
|
|
|
/// Number of unused accesses removed from this SCoP.
|
|
int DeadAccessesRemoved = 0;
|
|
|
|
/// Number of unused instructions removed from this SCoP.
|
|
int DeadInstructionsRemoved = 0;
|
|
|
|
/// Number of unnecessary statements removed from the SCoP.
|
|
int StmtsRemoved = 0;
|
|
|
|
/// Return whether at least one simplification has been applied.
|
|
bool isModified() const {
|
|
return OverwritesRemoved > 0 || RedundantWritesRemoved > 0 ||
|
|
DeadAccessesRemoved > 0 || DeadInstructionsRemoved > 0 ||
|
|
StmtsRemoved > 0;
|
|
}
|
|
|
|
MemoryAccess *getReadAccessForValue(ScopStmt *Stmt, llvm::Value *Val) {
|
|
if (!isa<Instruction>(Val))
|
|
return nullptr;
|
|
|
|
for (auto *MA : *Stmt) {
|
|
if (!MA->isRead())
|
|
continue;
|
|
if (MA->getAccessValue() != Val)
|
|
continue;
|
|
|
|
return MA;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return a write access that occurs between @p From and @p To.
|
|
///
|
|
/// In region statements the order is ignored because we cannot predict it.
|
|
///
|
|
/// @param Stmt Statement of both writes.
|
|
/// @param From Start looking after this access.
|
|
/// @param To Stop looking at this access, with the access itself.
|
|
/// @param Targets Look for an access that may wrote to one of these elements.
|
|
///
|
|
/// @return A write access between @p From and @p To that writes to at least
|
|
/// one element in @p Targets.
|
|
MemoryAccess *hasWriteBetween(ScopStmt *Stmt, MemoryAccess *From,
|
|
MemoryAccess *To, isl::map Targets) {
|
|
auto TargetsSpace = Targets.get_space();
|
|
|
|
bool Started = Stmt->isRegionStmt();
|
|
auto Accesses = getAccessesInOrder(*Stmt);
|
|
for (auto *Acc : Accesses) {
|
|
if (Acc->isLatestScalarKind())
|
|
continue;
|
|
|
|
if (Stmt->isBlockStmt() && From == Acc) {
|
|
assert(!Started);
|
|
Started = true;
|
|
continue;
|
|
}
|
|
if (Stmt->isBlockStmt() && To == Acc) {
|
|
assert(Started);
|
|
return nullptr;
|
|
}
|
|
if (!Started)
|
|
continue;
|
|
|
|
if (!Acc->isWrite())
|
|
continue;
|
|
|
|
auto AccRel = give(Acc->getAccessRelation());
|
|
auto AccRelSpace = AccRel.get_space();
|
|
|
|
// Spaces being different means that they access different arrays.
|
|
if (!TargetsSpace.has_equal_tuples(AccRelSpace))
|
|
continue;
|
|
|
|
AccRel = AccRel.intersect_domain(give(Acc->getStatement()->getDomain()));
|
|
AccRel = AccRel.intersect_params(give(S->getContext()));
|
|
auto CommonElt = Targets.intersect(AccRel);
|
|
if (!CommonElt.is_empty())
|
|
return Acc;
|
|
}
|
|
assert(Stmt->isRegionStmt() &&
|
|
"To must be encountered in block statements");
|
|
return nullptr;
|
|
}
|
|
|
|
/// Remove writes that are overwritten unconditionally later in the same
|
|
/// statement.
|
|
///
|
|
/// There must be no read of the same value between the write (that is to be
|
|
/// removed) and the overwrite.
|
|
void removeOverwrites() {
|
|
for (auto &Stmt : *S) {
|
|
auto Domain = give(Stmt.getDomain());
|
|
isl::union_map WillBeOverwritten =
|
|
isl::union_map::empty(give(S->getParamSpace()));
|
|
|
|
SmallVector<MemoryAccess *, 32> Accesses(getAccessesInOrder(Stmt));
|
|
|
|
// Iterate in reverse order, so the overwrite comes before the write that
|
|
// is to be removed.
|
|
for (auto *MA : reverse(Accesses)) {
|
|
|
|
// In region statements, the explicit accesses can be in blocks that are
|
|
// can be executed in any order. We therefore process only the implicit
|
|
// writes and stop after that.
|
|
if (Stmt.isRegionStmt() && isExplicitAccess(MA))
|
|
break;
|
|
|
|
auto AccRel = give(MA->getAccessRelation());
|
|
AccRel = AccRel.intersect_domain(Domain);
|
|
AccRel = AccRel.intersect_params(give(S->getContext()));
|
|
|
|
// If a value is read in-between, do not consider it as overwritten.
|
|
if (MA->isRead()) {
|
|
WillBeOverwritten = WillBeOverwritten.subtract(AccRel);
|
|
continue;
|
|
}
|
|
|
|
// If all of a write's elements are overwritten, remove it.
|
|
isl::union_map AccRelUnion = AccRel;
|
|
if (AccRelUnion.is_subset(WillBeOverwritten)) {
|
|
DEBUG(dbgs() << "Removing " << MA
|
|
<< " which will be overwritten anyway\n");
|
|
|
|
Stmt.removeSingleMemoryAccess(MA);
|
|
OverwritesRemoved++;
|
|
TotalOverwritesRemoved++;
|
|
}
|
|
|
|
// Unconditional writes overwrite other values.
|
|
if (MA->isMustWrite())
|
|
WillBeOverwritten = WillBeOverwritten.add_map(AccRel);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Remove writes that just write the same value already stored in the
|
|
/// element.
|
|
void removeRedundantWrites() {
|
|
// Delay actual removal to not invalidate iterators.
|
|
SmallVector<MemoryAccess *, 8> StoresToRemove;
|
|
|
|
for (auto &Stmt : *S) {
|
|
for (auto *WA : Stmt) {
|
|
if (!WA->isMustWrite())
|
|
continue;
|
|
if (!WA->isLatestArrayKind())
|
|
continue;
|
|
if (!isa<StoreInst>(WA->getAccessInstruction()) && !WA->isPHIKind())
|
|
continue;
|
|
|
|
llvm::Value *ReadingValue = WA->tryGetValueStored();
|
|
|
|
if (!ReadingValue)
|
|
continue;
|
|
|
|
auto RA = getReadAccessForValue(&Stmt, ReadingValue);
|
|
if (!RA)
|
|
continue;
|
|
if (!RA->isLatestArrayKind())
|
|
continue;
|
|
|
|
auto WARel = give(WA->getLatestAccessRelation());
|
|
WARel = WARel.intersect_domain(give(WA->getStatement()->getDomain()));
|
|
WARel = WARel.intersect_params(give(S->getContext()));
|
|
auto RARel = give(RA->getLatestAccessRelation());
|
|
RARel = RARel.intersect_domain(give(RA->getStatement()->getDomain()));
|
|
RARel = RARel.intersect_params(give(S->getContext()));
|
|
|
|
if (!RARel.is_equal(WARel)) {
|
|
PairUnequalAccRels++;
|
|
DEBUG(dbgs() << "Not cleaning up " << WA
|
|
<< " because of unequal access relations:\n");
|
|
DEBUG(dbgs() << " RA: " << RARel << "\n");
|
|
DEBUG(dbgs() << " WA: " << WARel << "\n");
|
|
continue;
|
|
}
|
|
|
|
if (auto *Conflicting = hasWriteBetween(&Stmt, RA, WA, WARel)) {
|
|
(void)Conflicting;
|
|
InBetweenStore++;
|
|
DEBUG(dbgs() << "Not cleaning up " << WA
|
|
<< " because there is another store to the same element "
|
|
"between\n");
|
|
DEBUG(Conflicting->print(dbgs()));
|
|
continue;
|
|
}
|
|
|
|
StoresToRemove.push_back(WA);
|
|
}
|
|
}
|
|
|
|
for (auto *WA : StoresToRemove) {
|
|
auto Stmt = WA->getStatement();
|
|
auto AccRel = give(WA->getAccessRelation());
|
|
auto AccVal = WA->getAccessValue();
|
|
|
|
DEBUG(dbgs() << "Cleanup of " << WA << ":\n");
|
|
DEBUG(dbgs() << " Scalar: " << *AccVal << "\n");
|
|
DEBUG(dbgs() << " AccRel: " << AccRel << "\n");
|
|
(void)AccVal;
|
|
(void)AccRel;
|
|
|
|
Stmt->removeSingleMemoryAccess(WA);
|
|
|
|
RedundantWritesRemoved++;
|
|
TotalRedundantWritesRemoved++;
|
|
}
|
|
}
|
|
|
|
/// Remove statements without side effects.
|
|
void removeUnnecessaryStmts() {
|
|
auto NumStmtsBefore = S->getSize();
|
|
S->simplifySCoP(true);
|
|
assert(NumStmtsBefore >= S->getSize());
|
|
StmtsRemoved = NumStmtsBefore - S->getSize();
|
|
DEBUG(dbgs() << "Removed " << StmtsRemoved << " (of " << NumStmtsBefore
|
|
<< ") statements\n");
|
|
TotalStmtsRemoved += StmtsRemoved;
|
|
}
|
|
|
|
/// Mark all reachable instructions and access, and sweep those that are not
|
|
/// reachable.
|
|
void markAndSweep(LoopInfo *LI) {
|
|
DenseSet<MemoryAccess *> UsedMA;
|
|
DenseSet<VirtualInstruction> UsedInsts;
|
|
|
|
// Get all reachable instructions and accesses.
|
|
markReachable(S, LI, UsedInsts, UsedMA);
|
|
|
|
// Remove all non-reachable accesses.
|
|
// We need get all MemoryAccesses first, in order to not invalidate the
|
|
// iterators when removing them.
|
|
SmallVector<MemoryAccess *, 64> AllMAs;
|
|
for (ScopStmt &Stmt : *S)
|
|
AllMAs.append(Stmt.begin(), Stmt.end());
|
|
|
|
for (MemoryAccess *MA : AllMAs) {
|
|
if (UsedMA.count(MA))
|
|
continue;
|
|
DEBUG(dbgs() << "Removing " << MA << " because its value is not used\n");
|
|
ScopStmt *Stmt = MA->getStatement();
|
|
Stmt->removeSingleMemoryAccess(MA);
|
|
|
|
DeadAccessesRemoved++;
|
|
TotalDeadAccessesRemoved++;
|
|
}
|
|
|
|
// Remove all non-reachable instructions.
|
|
for (ScopStmt &Stmt : *S) {
|
|
SmallVector<Instruction *, 32> AllInsts(Stmt.insts_begin(),
|
|
Stmt.insts_end());
|
|
SmallVector<Instruction *, 32> RemainInsts;
|
|
|
|
for (Instruction *Inst : AllInsts) {
|
|
auto It = UsedInsts.find({&Stmt, Inst});
|
|
if (It == UsedInsts.end()) {
|
|
DEBUG(dbgs() << "Removing "; Inst->print(dbgs());
|
|
dbgs() << " because it is not used\n");
|
|
DeadInstructionsRemoved++;
|
|
TotalDeadInstructionsRemoved++;
|
|
continue;
|
|
}
|
|
|
|
RemainInsts.push_back(Inst);
|
|
|
|
// If instructions appear multiple times, keep only the first.
|
|
UsedInsts.erase(It);
|
|
}
|
|
|
|
// Set the new instruction list to be only those we did not remove.
|
|
Stmt.setInstructions(RemainInsts);
|
|
}
|
|
}
|
|
|
|
/// Print simplification statistics to @p OS.
|
|
void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const {
|
|
OS.indent(Indent) << "Statistics {\n";
|
|
OS.indent(Indent + 4) << "Overwrites removed: " << OverwritesRemoved
|
|
<< '\n';
|
|
OS.indent(Indent + 4) << "Redundant writes removed: "
|
|
<< RedundantWritesRemoved << "\n";
|
|
OS.indent(Indent + 4) << "Dead accesses removed: " << DeadAccessesRemoved
|
|
<< '\n';
|
|
OS.indent(Indent + 4) << "Dead instructions removed: "
|
|
<< DeadInstructionsRemoved << '\n';
|
|
OS.indent(Indent + 4) << "Stmts removed: " << StmtsRemoved << "\n";
|
|
OS.indent(Indent) << "}\n";
|
|
}
|
|
|
|
/// Print the current state of all MemoryAccesses to @p OS.
|
|
void printAccesses(llvm::raw_ostream &OS, int Indent = 0) const {
|
|
OS.indent(Indent) << "After accesses {\n";
|
|
for (auto &Stmt : *S) {
|
|
OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
|
|
for (auto *MA : Stmt)
|
|
MA->print(OS);
|
|
}
|
|
OS.indent(Indent) << "}\n";
|
|
}
|
|
|
|
public:
|
|
static char ID;
|
|
explicit Simplify() : ScopPass(ID) {}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequiredTransitive<ScopInfoRegionPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
virtual bool runOnScop(Scop &S) override {
|
|
// Reset statistics of last processed SCoP.
|
|
releaseMemory();
|
|
assert(!isModified());
|
|
|
|
// Prepare processing of this SCoP.
|
|
this->S = &S;
|
|
ScopsProcessed++;
|
|
|
|
DEBUG(dbgs() << "Removing overwrites...\n");
|
|
removeOverwrites();
|
|
|
|
DEBUG(dbgs() << "Removing redundant writes...\n");
|
|
removeRedundantWrites();
|
|
|
|
DEBUG(dbgs() << "Cleanup unused accesses...\n");
|
|
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
markAndSweep(LI);
|
|
|
|
DEBUG(dbgs() << "Removing statements without side effects...\n");
|
|
removeUnnecessaryStmts();
|
|
|
|
if (isModified())
|
|
ScopsModified++;
|
|
DEBUG(dbgs() << "\nFinal Scop:\n");
|
|
DEBUG(dbgs() << S);
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual void printScop(raw_ostream &OS, Scop &S) const override {
|
|
assert(&S == this->S &&
|
|
"Can only print analysis for the last processed SCoP");
|
|
printStatistics(OS);
|
|
|
|
if (!isModified()) {
|
|
OS << "SCoP could not be simplified\n";
|
|
return;
|
|
}
|
|
printAccesses(OS);
|
|
}
|
|
|
|
virtual void releaseMemory() override {
|
|
S = nullptr;
|
|
|
|
OverwritesRemoved = 0;
|
|
RedundantWritesRemoved = 0;
|
|
DeadAccessesRemoved = 0;
|
|
DeadInstructionsRemoved = 0;
|
|
StmtsRemoved = 0;
|
|
}
|
|
};
|
|
|
|
char Simplify::ID;
|
|
} // anonymous namespace
|
|
|
|
Pass *polly::createSimplifyPass() { return new Simplify(); }
|
|
|
|
INITIALIZE_PASS_BEGIN(Simplify, "polly-simplify", "Polly - Simplify", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(Simplify, "polly-simplify", "Polly - Simplify", false,
|
|
false)
|