Files
llvm/lld/COFF/SymbolTable.cpp
Rui Ueyama cc6738a439 Use error() instead of warn() to report undefined symbols.
I believe the reason why we used warn() instead of error() to report
undefined symbols is because the older implementation of error() exitted
immediately. Here, we want to find as many undefined symbols as we can,
so I chose to use warn() instead of error().

Now error() does not exit immediately, so it doesn't make sense to keep
them as warnings.

Differential Revision: https://reviews.llvm.org/D38652

llvm-svn: 315131
2017-10-06 23:43:54 +00:00

394 lines
12 KiB
C++

//===- SymbolTable.cpp ----------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SymbolTable.h"
#include "Config.h"
#include "Driver.h"
#include "Error.h"
#include "LTO.h"
#include "Memory.h"
#include "Symbols.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <utility>
using namespace llvm;
namespace lld {
namespace coff {
enum SymbolPreference {
SP_EXISTING = -1,
SP_CONFLICT = 0,
SP_NEW = 1,
};
/// Checks if an existing symbol S should be kept or replaced by a new symbol.
/// Returns SP_EXISTING when S should be kept, SP_NEW when the new symbol
/// should be kept, and SP_CONFLICT if no valid resolution exists.
static SymbolPreference compareDefined(Symbol *S, bool WasInserted,
bool NewIsCOMDAT) {
// If the symbol wasn't previously known, the new symbol wins by default.
if (WasInserted || !isa<Defined>(S->body()))
return SP_NEW;
// If the existing symbol is a DefinedRegular, both it and the new symbol
// must be comdats. In that case, we have no reason to prefer one symbol
// over the other, and we keep the existing one. If one of the symbols
// is not a comdat, we report a conflict.
if (auto *R = dyn_cast<DefinedRegular>(S->body())) {
if (NewIsCOMDAT && R->isCOMDAT())
return SP_EXISTING;
else
return SP_CONFLICT;
}
// Existing symbol is not a DefinedRegular; new symbol wins.
return SP_NEW;
}
SymbolTable *Symtab;
void SymbolTable::addFile(InputFile *File) {
log("Reading " + toString(File));
File->parse();
MachineTypes MT = File->getMachineType();
if (Config->Machine == IMAGE_FILE_MACHINE_UNKNOWN) {
Config->Machine = MT;
} else if (MT != IMAGE_FILE_MACHINE_UNKNOWN && Config->Machine != MT) {
fatal(toString(File) + ": machine type " + machineToStr(MT) +
" conflicts with " + machineToStr(Config->Machine));
}
if (auto *F = dyn_cast<ObjFile>(File)) {
ObjFile::Instances.push_back(F);
} else if (auto *F = dyn_cast<BitcodeFile>(File)) {
BitcodeFile::Instances.push_back(F);
} else if (auto *F = dyn_cast<ImportFile>(File)) {
ImportFile::Instances.push_back(F);
}
StringRef S = File->getDirectives();
if (S.empty())
return;
log("Directives: " + toString(File) + ": " + S);
Driver->parseDirectives(S);
}
static void errorOrWarn(const Twine &S) {
if (Config->Force)
warn(S);
else
error(S);
}
void SymbolTable::reportRemainingUndefines() {
SmallPtrSet<SymbolBody *, 8> Undefs;
for (auto &I : Symtab) {
Symbol *Sym = I.second;
auto *Undef = dyn_cast<Undefined>(Sym->body());
if (!Undef)
continue;
if (!Sym->IsUsedInRegularObj)
continue;
StringRef Name = Undef->getName();
// A weak alias may have been resolved, so check for that.
if (Defined *D = Undef->getWeakAlias()) {
// We resolve weak aliases by replacing the alias's SymbolBody with the
// target's SymbolBody. This causes all SymbolBody pointers referring to
// the old symbol to instead refer to the new symbol. However, we can't
// just blindly copy sizeof(Symbol::Body) bytes from D to Sym->Body
// because D may be an internal symbol, and internal symbols are stored as
// "unparented" SymbolBodies. For that reason we need to check which type
// of symbol we are dealing with and copy the correct number of bytes.
if (isa<DefinedRegular>(D))
memcpy(Sym->Body.buffer, D, sizeof(DefinedRegular));
else if (isa<DefinedAbsolute>(D))
memcpy(Sym->Body.buffer, D, sizeof(DefinedAbsolute));
else
// No other internal symbols are possible.
Sym->Body = D->symbol()->Body;
continue;
}
// If we can resolve a symbol by removing __imp_ prefix, do that.
// This odd rule is for compatibility with MSVC linker.
if (Name.startswith("__imp_")) {
Symbol *Imp = find(Name.substr(strlen("__imp_")));
if (Imp && isa<Defined>(Imp->body())) {
auto *D = cast<Defined>(Imp->body());
replaceBody<DefinedLocalImport>(Sym, Name, D);
LocalImportChunks.push_back(
cast<DefinedLocalImport>(Sym->body())->getChunk());
continue;
}
}
// Remaining undefined symbols are not fatal if /force is specified.
// They are replaced with dummy defined symbols.
if (Config->Force)
replaceBody<DefinedAbsolute>(Sym, Name, 0);
Undefs.insert(Sym->body());
}
if (Undefs.empty())
return;
for (SymbolBody *B : Config->GCRoot)
if (Undefs.count(B))
errorOrWarn("<root>: undefined symbol: " + B->getName());
for (ObjFile *File : ObjFile::Instances)
for (SymbolBody *Sym : File->getSymbols())
if (Undefs.count(Sym))
errorOrWarn(toString(File) + ": undefined symbol: " + Sym->getName());
}
std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name) {
Symbol *&Sym = Symtab[CachedHashStringRef(Name)];
if (Sym)
return {Sym, false};
Sym = make<Symbol>();
Sym->IsUsedInRegularObj = false;
Sym->PendingArchiveLoad = false;
return {Sym, true};
}
Symbol *SymbolTable::addUndefined(StringRef Name, InputFile *F,
bool IsWeakAlias) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name);
if (!F || !isa<BitcodeFile>(F))
S->IsUsedInRegularObj = true;
if (WasInserted || (isa<Lazy>(S->body()) && IsWeakAlias)) {
replaceBody<Undefined>(S, Name);
return S;
}
if (auto *L = dyn_cast<Lazy>(S->body())) {
if (!S->PendingArchiveLoad) {
S->PendingArchiveLoad = true;
L->File->addMember(&L->Sym);
}
}
return S;
}
void SymbolTable::addLazy(ArchiveFile *F, const Archive::Symbol Sym) {
StringRef Name = Sym.getName();
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name);
if (WasInserted) {
replaceBody<Lazy>(S, F, Sym);
return;
}
auto *U = dyn_cast<Undefined>(S->body());
if (!U || U->WeakAlias || S->PendingArchiveLoad)
return;
S->PendingArchiveLoad = true;
F->addMember(&Sym);
}
void SymbolTable::reportDuplicate(Symbol *Existing, InputFile *NewFile) {
error("duplicate symbol: " + toString(*Existing->body()) + " in " +
toString(Existing->body()->getFile()) + " and in " +
(NewFile ? toString(NewFile) : "(internal)"));
}
Symbol *SymbolTable::addAbsolute(StringRef N, COFFSymbolRef Sym) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(N);
S->IsUsedInRegularObj = true;
if (WasInserted || isa<Undefined>(S->body()) || isa<Lazy>(S->body()))
replaceBody<DefinedAbsolute>(S, N, Sym);
else if (!isa<DefinedCOFF>(S->body()))
reportDuplicate(S, nullptr);
return S;
}
Symbol *SymbolTable::addAbsolute(StringRef N, uint64_t VA) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(N);
S->IsUsedInRegularObj = true;
if (WasInserted || isa<Undefined>(S->body()) || isa<Lazy>(S->body()))
replaceBody<DefinedAbsolute>(S, N, VA);
else if (!isa<DefinedCOFF>(S->body()))
reportDuplicate(S, nullptr);
return S;
}
Symbol *SymbolTable::addSynthetic(StringRef N, Chunk *C) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(N);
S->IsUsedInRegularObj = true;
if (WasInserted || isa<Undefined>(S->body()) || isa<Lazy>(S->body()))
replaceBody<DefinedSynthetic>(S, N, C);
else if (!isa<DefinedCOFF>(S->body()))
reportDuplicate(S, nullptr);
return S;
}
Symbol *SymbolTable::addRegular(InputFile *F, StringRef N, bool IsCOMDAT,
const coff_symbol_generic *Sym,
SectionChunk *C) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(N);
if (!isa<BitcodeFile>(F))
S->IsUsedInRegularObj = true;
SymbolPreference SP = compareDefined(S, WasInserted, IsCOMDAT);
if (SP == SP_CONFLICT) {
reportDuplicate(S, F);
} else if (SP == SP_NEW) {
replaceBody<DefinedRegular>(S, F, N, IsCOMDAT, /*IsExternal*/ true, Sym, C);
} else if (SP == SP_EXISTING && IsCOMDAT && C) {
C->markDiscarded();
// Discard associative chunks that we've parsed so far. No need to recurse
// because an associative section cannot have children.
for (SectionChunk *Child : C->children())
Child->markDiscarded();
}
return S;
}
Symbol *SymbolTable::addCommon(InputFile *F, StringRef N, uint64_t Size,
const coff_symbol_generic *Sym, CommonChunk *C) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(N);
if (!isa<BitcodeFile>(F))
S->IsUsedInRegularObj = true;
if (WasInserted || !isa<DefinedCOFF>(S->body()))
replaceBody<DefinedCommon>(S, F, N, Size, Sym, C);
else if (auto *DC = dyn_cast<DefinedCommon>(S->body()))
if (Size > DC->getSize())
replaceBody<DefinedCommon>(S, F, N, Size, Sym, C);
return S;
}
DefinedImportData *SymbolTable::addImportData(StringRef N, ImportFile *F) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(N);
S->IsUsedInRegularObj = true;
if (WasInserted || isa<Undefined>(S->body()) || isa<Lazy>(S->body())) {
replaceBody<DefinedImportData>(S, N, F);
return cast<DefinedImportData>(S->body());
}
reportDuplicate(S, F);
return nullptr;
}
DefinedImportThunk *SymbolTable::addImportThunk(StringRef Name,
DefinedImportData *ID,
uint16_t Machine) {
Symbol *S;
bool WasInserted;
std::tie(S, WasInserted) = insert(Name);
S->IsUsedInRegularObj = true;
if (WasInserted || isa<Undefined>(S->body()) || isa<Lazy>(S->body())) {
replaceBody<DefinedImportThunk>(S, Name, ID, Machine);
return cast<DefinedImportThunk>(S->body());
}
reportDuplicate(S, ID->File);
return nullptr;
}
std::vector<Chunk *> SymbolTable::getChunks() {
std::vector<Chunk *> Res;
for (ObjFile *File : ObjFile::Instances) {
std::vector<Chunk *> &V = File->getChunks();
Res.insert(Res.end(), V.begin(), V.end());
}
return Res;
}
Symbol *SymbolTable::find(StringRef Name) {
auto It = Symtab.find(CachedHashStringRef(Name));
if (It == Symtab.end())
return nullptr;
return It->second;
}
Symbol *SymbolTable::findUnderscore(StringRef Name) {
if (Config->Machine == I386)
return find(("_" + Name).str());
return find(Name);
}
StringRef SymbolTable::findByPrefix(StringRef Prefix) {
for (auto Pair : Symtab) {
StringRef Name = Pair.first.val();
if (Name.startswith(Prefix))
return Name;
}
return "";
}
StringRef SymbolTable::findMangle(StringRef Name) {
if (Symbol *Sym = find(Name))
if (!isa<Undefined>(Sym->body()))
return Name;
if (Config->Machine != I386)
return findByPrefix(("?" + Name + "@@Y").str());
if (!Name.startswith("_"))
return "";
// Search for x86 C function.
StringRef S = findByPrefix((Name + "@").str());
if (!S.empty())
return S;
// Search for x86 C++ non-member function.
return findByPrefix(("?" + Name.substr(1) + "@@Y").str());
}
void SymbolTable::mangleMaybe(SymbolBody *B) {
auto *U = dyn_cast<Undefined>(B);
if (!U || U->WeakAlias)
return;
StringRef Alias = findMangle(U->getName());
if (!Alias.empty())
U->WeakAlias = addUndefined(Alias);
}
SymbolBody *SymbolTable::addUndefined(StringRef Name) {
return addUndefined(Name, nullptr, false)->body();
}
std::vector<StringRef> SymbolTable::compileBitcodeFiles() {
LTO.reset(new BitcodeCompiler);
for (BitcodeFile *F : BitcodeFile::Instances)
LTO->add(*F);
return LTO->compile();
}
void SymbolTable::addCombinedLTOObjects() {
if (BitcodeFile::Instances.empty())
return;
for (StringRef Object : compileBitcodeFiles()) {
auto *Obj = make<ObjFile>(MemoryBufferRef(Object, "lto.tmp"));
Obj->parse();
ObjFile::Instances.push_back(Obj);
}
}
} // namespace coff
} // namespace lld