Files
llvm/lld/COFF/Chunks.cpp
Rui Ueyama eb26e1d03c COFF: Fix SECREL and SECTION relocations.
SECREL should sets the 32-bit offset of the target from the beginning
of *target's* output section. Previously, the offset from the beginning
of source's output section was used instead.

SECTION means the target section's index, and not the source section's
index. This patch fixes that issue too.

llvm-svn: 243535
2015-07-29 16:30:45 +00:00

385 lines
12 KiB
C++

//===- Chunks.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Chunks.h"
#include "InputFiles.h"
#include "Writer.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::COFF;
using llvm::support::ulittle32_t;
namespace lld {
namespace coff {
SectionChunk::SectionChunk(ObjectFile *F, const coff_section *H)
: Chunk(SectionKind), Ptr(this), File(F), Header(H),
Relocs(File->getCOFFObj()->getRelocations(Header)),
NumRelocs(std::distance(Relocs.begin(), Relocs.end())) {
// Initialize SectionName.
File->getCOFFObj()->getSectionName(Header, SectionName);
// Bit [20:24] contains section alignment. Both 0 and 1 mean alignment 1.
unsigned Shift = (Header->Characteristics >> 20) & 0xF;
if (Shift > 0)
Align = uint32_t(1) << (Shift - 1);
// COMDAT sections are not GC root. Non-text sections are not
// subject of garbage collection (thus they are root).
Root = !isCOMDAT() && !(Header->Characteristics & IMAGE_SCN_CNT_CODE);
}
static void add16(uint8_t *P, int16_t V) { write16le(P, read16le(P) + V); }
static void add32(uint8_t *P, int32_t V) { write32le(P, read32le(P) + V); }
static void add64(uint8_t *P, int64_t V) { write64le(P, read64le(P) + V); }
static void or16(uint8_t *P, uint16_t V) { write16le(P, read16le(P) | V); }
void SectionChunk::applyRelX64(uint8_t *Off, uint16_t Type, Defined *Sym,
uint64_t P) {
uint64_t S = Sym->getRVA();
switch (Type) {
case IMAGE_REL_AMD64_ADDR32: add32(Off, S + Config->ImageBase); break;
case IMAGE_REL_AMD64_ADDR64: add64(Off, S + Config->ImageBase); break;
case IMAGE_REL_AMD64_ADDR32NB: add32(Off, S); break;
case IMAGE_REL_AMD64_REL32: add32(Off, S - P - 4); break;
case IMAGE_REL_AMD64_REL32_1: add32(Off, S - P - 5); break;
case IMAGE_REL_AMD64_REL32_2: add32(Off, S - P - 6); break;
case IMAGE_REL_AMD64_REL32_3: add32(Off, S - P - 7); break;
case IMAGE_REL_AMD64_REL32_4: add32(Off, S - P - 8); break;
case IMAGE_REL_AMD64_REL32_5: add32(Off, S - P - 9); break;
case IMAGE_REL_AMD64_SECTION: add16(Off, Sym->getSectionIndex()); break;
case IMAGE_REL_AMD64_SECREL: add32(Off, Sym->getSecrel()); break;
default:
llvm::report_fatal_error("Unsupported relocation type");
}
}
void SectionChunk::applyRelX86(uint8_t *Off, uint16_t Type, Defined *Sym,
uint64_t P) {
uint64_t S = Sym->getRVA();
switch (Type) {
case IMAGE_REL_I386_ABSOLUTE: break;
case IMAGE_REL_I386_DIR32: add32(Off, S + Config->ImageBase); break;
case IMAGE_REL_I386_DIR32NB: add32(Off, S); break;
case IMAGE_REL_I386_REL32: add32(Off, S - P - 4); break;
case IMAGE_REL_I386_SECTION: add16(Off, Sym->getSectionIndex()); break;
case IMAGE_REL_I386_SECREL: add32(Off, Sym->getSecrel()); break;
default:
llvm::report_fatal_error("Unsupported relocation type");
}
}
static void applyMOV32T(uint8_t *Off, uint32_t V) {
uint16_t X = V;
or16(Off, ((X & 0x800) >> 1) | ((X >> 12) & 0xf));
or16(Off + 2, ((X & 0x700) << 4) | (X & 0xff));
X = V >> 16;
or16(Off + 4, ((X & 0x800) >> 1) | ((X >> 12) & 0xf));
or16(Off + 6, ((X & 0x700) << 4) | (X & 0xff));
}
static void applyBranchImm(uint8_t *Off, int32_t V) {
uint32_t S = V < 0 ? 1 : 0;
uint32_t J1 = ((~V >> 23) & 1) ^ S;
uint32_t J2 = ((~V >> 22) & 1) ^ S;
or16(Off, ((V >> 12) & 0x3ff) | (S << 10));
or16(Off + 2, ((V >> 1) & 0x7ff) | (J2 << 11) | (J1 << 13));
}
void SectionChunk::applyRelARM(uint8_t *Off, uint16_t Type, Defined *Sym,
uint64_t P) {
uint64_t S = Sym->getRVA();
switch (Type) {
case IMAGE_REL_ARM_ADDR32: add32(Off, S + Config->ImageBase); break;
case IMAGE_REL_ARM_ADDR32NB: add32(Off, S); break;
case IMAGE_REL_ARM_MOV32T: applyMOV32T(Off, S + Config->ImageBase); break;
case IMAGE_REL_ARM_BRANCH24T: applyBranchImm(Off, S - P - 4); break;
case IMAGE_REL_ARM_BLX23T: applyBranchImm(Off, S - P - 4); break;
default:
llvm::report_fatal_error("Unsupported relocation type");
}
}
void SectionChunk::writeTo(uint8_t *Buf) {
if (!hasData())
return;
// Copy section contents from source object file to output file.
ArrayRef<uint8_t> A = getContents();
memcpy(Buf + FileOff, A.data(), A.size());
// Apply relocations.
for (const coff_relocation &Rel : Relocs) {
uint8_t *Off = Buf + FileOff + Rel.VirtualAddress;
SymbolBody *Body = File->getSymbolBody(Rel.SymbolTableIndex)->repl();
Defined *Sym = cast<Defined>(Body);
uint64_t P = RVA + Rel.VirtualAddress;
switch (Config->Machine) {
case AMD64:
applyRelX64(Off, Rel.Type, Sym, P);
break;
case I386:
applyRelX86(Off, Rel.Type, Sym, P);
break;
case ARMNT:
applyRelARM(Off, Rel.Type, Sym, P);
break;
default:
llvm_unreachable("unknown machine type");
}
}
}
void SectionChunk::addAssociative(SectionChunk *Child) {
AssocChildren.push_back(Child);
// Associative sections are live if their parent COMDATs are live,
// and vice versa, so they are not considered live by themselves.
Child->Root = false;
}
static uint8_t getBaserelType(const coff_relocation &Rel) {
switch (Config->Machine) {
case AMD64:
if (Rel.Type == IMAGE_REL_AMD64_ADDR64)
return IMAGE_REL_BASED_DIR64;
return IMAGE_REL_BASED_ABSOLUTE;
case I386:
if (Rel.Type == IMAGE_REL_I386_DIR32)
return IMAGE_REL_BASED_HIGHLOW;
return IMAGE_REL_BASED_ABSOLUTE;
case ARMNT:
if (Rel.Type == IMAGE_REL_ARM_ADDR32)
return IMAGE_REL_BASED_HIGHLOW;
if (Rel.Type == IMAGE_REL_ARM_MOV32T)
return IMAGE_REL_BASED_ARM_MOV32T;
return IMAGE_REL_BASED_ABSOLUTE;
default:
llvm_unreachable("unknown machine type");
}
}
// Windows-specific.
// Collect all locations that contain absolute addresses, which need to be
// fixed by the loader if load-time relocation is needed.
// Only called when base relocation is enabled.
void SectionChunk::getBaserels(std::vector<Baserel> *Res) {
for (const coff_relocation &Rel : Relocs) {
uint8_t Ty = getBaserelType(Rel);
if (Ty == IMAGE_REL_BASED_ABSOLUTE)
continue;
SymbolBody *Body = File->getSymbolBody(Rel.SymbolTableIndex)->repl();
if (isa<DefinedAbsolute>(Body))
continue;
Res->emplace_back(RVA + Rel.VirtualAddress, Ty);
}
}
bool SectionChunk::hasData() const {
return !(Header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
}
uint32_t SectionChunk::getPermissions() const {
return Header->Characteristics & PermMask;
}
bool SectionChunk::isCOMDAT() const {
return Header->Characteristics & IMAGE_SCN_LNK_COMDAT;
}
void SectionChunk::printDiscardedMessage() const {
if (this == Ptr) {
// Removed by dead-stripping.
llvm::dbgs() << "Discarded " << Sym->getName() << "\n";
} else {
// Removed by ICF.
llvm::dbgs() << "Replaced " << Sym->getName() << "\n";
}
}
StringRef SectionChunk::getDebugName() {
return Sym->getName();
}
uint64_t SectionChunk::getHash() const {
ArrayRef<uint8_t> A = getContents();
return hash_combine(getPermissions(),
llvm::hash_value(SectionName),
NumRelocs,
uint32_t(Header->SizeOfRawData),
std::distance(Relocs.end(), Relocs.begin()),
hash_combine_range(A.data(), A.data() + A.size()));
}
// Returns true if this and a given chunk are identical COMDAT sections.
bool SectionChunk::equals(const SectionChunk *X) const {
// Compare headers
if (getPermissions() != X->getPermissions())
return false;
if (SectionName != X->SectionName)
return false;
if (Header->SizeOfRawData != X->Header->SizeOfRawData)
return false;
if (NumRelocs != X->NumRelocs)
return false;
// Compare data
if (getContents() != X->getContents())
return false;
// Compare associative sections
if (AssocChildren.size() != X->AssocChildren.size())
return false;
for (size_t I = 0, E = AssocChildren.size(); I != E; ++I)
if (AssocChildren[I]->Ptr != X->AssocChildren[I]->Ptr)
return false;
// Compare relocations
auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
if (R1.Type != R2.Type)
return false;
if (R1.VirtualAddress != R2.VirtualAddress)
return false;
SymbolBody *B1 = File->getSymbolBody(R1.SymbolTableIndex)->repl();
SymbolBody *B2 = X->File->getSymbolBody(R2.SymbolTableIndex)->repl();
if (B1 == B2)
return true;
auto *D1 = dyn_cast<DefinedRegular>(B1);
auto *D2 = dyn_cast<DefinedRegular>(B2);
return (D1 && D2 &&
D1->getValue() == D2->getValue() &&
D1->getChunk() == D2->getChunk());
};
return std::equal(Relocs.begin(), Relocs.end(), X->Relocs.begin(), Eq);
}
ArrayRef<uint8_t> SectionChunk::getContents() const {
ArrayRef<uint8_t> A;
File->getCOFFObj()->getSectionContents(Header, A);
return A;
}
void SectionChunk::replaceWith(SectionChunk *Other) {
Ptr = Other->Ptr;
Live = false;
}
CommonChunk::CommonChunk(const COFFSymbolRef S) : Sym(S) {
// Common symbols are aligned on natural boundaries up to 32 bytes.
// This is what MSVC link.exe does.
Align = std::min(uint64_t(32), NextPowerOf2(Sym.getValue()));
}
uint32_t CommonChunk::getPermissions() const {
return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
IMAGE_SCN_MEM_WRITE;
}
void StringChunk::writeTo(uint8_t *Buf) {
memcpy(Buf + FileOff, Str.data(), Str.size());
}
ImportThunkChunkX64::ImportThunkChunkX64(Defined *S) : ImpSymbol(S) {
// Intel Optimization Manual says that all branch targets
// should be 16-byte aligned. MSVC linker does this too.
Align = 16;
}
void ImportThunkChunkX64::writeTo(uint8_t *Buf) {
memcpy(Buf + FileOff, ImportThunkX86, sizeof(ImportThunkX86));
// The first two bytes is a JMP instruction. Fill its operand.
write32le(Buf + FileOff + 2, ImpSymbol->getRVA() - RVA - getSize());
}
void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *Res) {
Res->emplace_back(getRVA() + 2);
}
void ImportThunkChunkX86::writeTo(uint8_t *Buf) {
memcpy(Buf + FileOff, ImportThunkX86, sizeof(ImportThunkX86));
// The first two bytes is a JMP instruction. Fill its operand.
write32le(Buf + FileOff + 2, ImpSymbol->getRVA() + Config->ImageBase);
}
void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *Res) {
Res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
}
void ImportThunkChunkARM::writeTo(uint8_t *Buf) {
memcpy(Buf + FileOff, ImportThunkARM, sizeof(ImportThunkARM));
// Fix mov.w and mov.t operands.
applyMOV32T(Buf + FileOff, ImpSymbol->getRVA() + Config->ImageBase);
}
void LocalImportChunk::getBaserels(std::vector<Baserel> *Res) {
Res->emplace_back(getRVA());
}
size_t LocalImportChunk::getSize() const {
return Config->is64() ? 8 : 4;
}
void LocalImportChunk::writeTo(uint8_t *Buf) {
if (Config->is64()) {
write64le(Buf + FileOff, Sym->getRVA() + Config->ImageBase);
} else {
write32le(Buf + FileOff, Sym->getRVA() + Config->ImageBase);
}
}
void SEHTableChunk::writeTo(uint8_t *Buf) {
ulittle32_t *Begin = reinterpret_cast<ulittle32_t *>(Buf + FileOff);
size_t Cnt = 0;
for (Defined *D : Syms)
Begin[Cnt++] = D->getRVA();
std::sort(Begin, Begin + Cnt);
}
// Windows-specific.
// This class represents a block in .reloc section.
BaserelChunk::BaserelChunk(uint32_t Page, Baserel *Begin, Baserel *End) {
// Block header consists of 4 byte page RVA and 4 byte block size.
// Each entry is 2 byte. Last entry may be padding.
Data.resize(RoundUpToAlignment((End - Begin) * 2 + 8, 4));
uint8_t *P = Data.data();
write32le(P, Page);
write32le(P + 4, Data.size());
P += 8;
for (Baserel *I = Begin; I != End; ++I) {
write16le(P, (I->Type << 12) | (I->RVA - Page));
P += 2;
}
}
void BaserelChunk::writeTo(uint8_t *Buf) {
memcpy(Buf + FileOff, Data.data(), Data.size());
}
uint8_t Baserel::getDefaultType() {
switch (Config->Machine) {
case AMD64:
return IMAGE_REL_BASED_DIR64;
case I386:
return IMAGE_REL_BASED_HIGHLOW;
default:
llvm_unreachable("unknown machine type");
}
}
} // namespace coff
} // namespace lld