Files
llvm/mlir/lib/Dialect/VectorOps/VectorOps.cpp
Nicolas Vasilache ee95f6f259 Add VectorOps.StridedSliceOp
The `vector.strided_slice` takes an n-D vector, k-D `offsets` integer array attribute, a
k-D `sizes` integer array attribute, a k-D `strides` integer array attribute and extracts
the n-D subvector at the proper offset.

Returns an n-D vector where the first k-D dimensions match the `sizes` attribute.
The returned subvector contains the elements starting at offset `offsets` and ending at
`offsets + sizes`.

Example:
```
  %1 = vector.strided_slice %0
      {offsets : [0, 2], sizes : [2, 4], strides : [1, 1]}:
    vector<4x8x16xf32> // returns a vector<2x4x16xf32>
```

This op will be useful for progressive lowering within the VectorOp dialect.

PiperOrigin-RevId: 281352749
2019-11-19 12:22:34 -08:00

550 lines
23 KiB
C++

//===- VectorOps.cpp - MLIR Super Vectorizer Operations -------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements convenience types for working with super-vectorization
// operations, in particular super-vector loads and stores.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LLVM.h"
using namespace mlir;
using namespace mlir::vector;
//===----------------------------------------------------------------------===//
// VectorOpsDialect
//===----------------------------------------------------------------------===//
mlir::vector::VectorOpsDialect::VectorOpsDialect(MLIRContext *context)
: Dialect(getDialectNamespace(), context) {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
>();
}
//===----------------------------------------------------------------------===//
// VectorExtractElementOp
//===----------------------------------------------------------------------===//
static Type inferExtractOpResultType(VectorType vectorType,
ArrayAttr position) {
if (static_cast<int64_t>(position.size()) == vectorType.getRank())
return vectorType.getElementType();
return VectorType::get(vectorType.getShape().drop_front(position.size()),
vectorType.getElementType());
}
void VectorExtractElementOp::build(Builder *builder, OperationState &result,
Value *source, ArrayRef<int32_t> position) {
result.addOperands(source);
auto positionAttr = builder->getI32ArrayAttr(position);
result.addTypes(inferExtractOpResultType(source->getType().cast<VectorType>(),
positionAttr));
result.addAttribute(getPositionAttrName(), positionAttr);
}
static void print(OpAsmPrinter &p, VectorExtractElementOp op) {
p << op.getOperationName() << " " << *op.vector() << op.position();
p.printOptionalAttrDict(op.getAttrs(), {"position"});
p << " : " << op.vector()->getType();
}
static ParseResult parseVectorExtractElementOp(OpAsmParser &parser,
OperationState &result) {
llvm::SMLoc attributeLoc, typeLoc;
SmallVector<NamedAttribute, 4> attrs;
OpAsmParser::OperandType vector;
Type type;
Attribute attr;
if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) ||
parser.parseAttribute(attr, "position", attrs) ||
parser.parseOptionalAttrDict(attrs) ||
parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type))
return failure();
auto vectorType = type.dyn_cast<VectorType>();
if (!vectorType)
return parser.emitError(typeLoc, "expected vector type");
auto positionAttr = attr.dyn_cast<ArrayAttr>();
if (!positionAttr ||
static_cast<int64_t>(positionAttr.size()) > vectorType.getRank())
return parser.emitError(
attributeLoc,
"expected position attribute of rank smaller than vector rank");
Type resType = inferExtractOpResultType(vectorType, positionAttr);
result.attributes = attrs;
return failure(parser.resolveOperand(vector, type, result.operands) ||
parser.addTypeToList(resType, result.types));
}
static LogicalResult verify(VectorExtractElementOp op) {
auto positionAttr = op.position().getValue();
if (positionAttr.empty())
return op.emitOpError("expected non-empty position attribute");
if (positionAttr.size() > static_cast<unsigned>(op.getVectorType().getRank()))
return op.emitOpError(
"expected position attribute of rank smaller than vector rank");
for (auto en : llvm::enumerate(positionAttr)) {
auto attr = en.value().dyn_cast<IntegerAttr>();
if (!attr || attr.getInt() < 0 ||
attr.getInt() > op.getVectorType().getDimSize(en.index()))
return op.emitOpError("expected position attribute #")
<< (en.index() + 1)
<< " to be a positive integer smaller than the corresponding "
"vector dimension";
}
return success();
}
//===----------------------------------------------------------------------===//
// VectorStridedSliceOp
//===----------------------------------------------------------------------===//
static Type inferVectorExtractRangeOpResultType(VectorType vectorType,
ArrayAttr offsets,
ArrayAttr sizes,
ArrayAttr strides) {
assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
SmallVector<int64_t, 4> shape;
shape.reserve(vectorType.getRank());
unsigned idx = 0;
for (unsigned e = offsets.size(); idx < e; ++idx)
shape.push_back(sizes.getValue()[idx].cast<IntegerAttr>().getInt());
for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
shape.push_back(vectorType.getShape()[idx]);
return VectorType::get(shape, vectorType.getElementType());
}
void VectorStridedSliceOp::build(Builder *builder, OperationState &result,
Value *source, ArrayRef<int64_t> offsets,
ArrayRef<int64_t> sizes,
ArrayRef<int64_t> strides) {
result.addOperands(source);
auto offsetsAttr = builder->getI64ArrayAttr(offsets);
auto sizesAttr = builder->getI64ArrayAttr(sizes);
auto stridesAttr = builder->getI64ArrayAttr(strides);
result.addTypes(
inferVectorExtractRangeOpResultType(source->getType().cast<VectorType>(),
offsetsAttr, sizesAttr, stridesAttr));
result.addAttribute(getOffsetsAttrName(), offsetsAttr);
result.addAttribute(getSizesAttrName(), sizesAttr);
result.addAttribute(getStridesAttrName(), stridesAttr);
}
static void print(OpAsmPrinter &p, VectorStridedSliceOp op) {
p << op.getOperationName() << " " << *op.vector();
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.vector()->getType() << " to " << op.getResult()->getType();
}
static ParseResult parseVectorStridedSliceOp(OpAsmParser &parser,
OperationState &result) {
llvm::SMLoc attributeLoc, typeLoc;
OpAsmParser::OperandType vector;
VectorType vectorType, resultVectorType;
return failure(parser.parseOperand(vector) ||
parser.getCurrentLocation(&attributeLoc) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.getCurrentLocation(&typeLoc) ||
parser.parseColonType(vectorType) ||
parser.parseKeywordType("to", resultVectorType) ||
parser.resolveOperand(vector, vectorType, result.operands) ||
parser.addTypeToList(resultVectorType, result.types));
}
// TODO(ntv) Should be moved to Tablegen Confined attributes.
static bool isIntegerArrayAttrSmallerThanShape(VectorStridedSliceOp op,
ArrayAttr arrayAttr,
ShapedType shape,
StringRef attrName) {
if (arrayAttr.size() > static_cast<unsigned>(shape.getRank())) {
op.emitOpError("expected ")
<< attrName << " attribute of rank smaller than vector rank";
return false;
}
return true;
}
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
static bool isIntegerArrayAttrConfinedToRange(VectorStridedSliceOp op,
ArrayAttr arrayAttr, int64_t min,
int64_t max, StringRef attrName,
bool halfOpen = true) {
for (auto attr : arrayAttr) {
auto val = attr.cast<IntegerAttr>().getInt();
auto upper = max;
if (!halfOpen)
upper += 1;
if (val < min || val >= upper) {
op.emitOpError("expected ")
<< attrName << " to be confined to [" << min << ", " << upper << ")";
return false;
}
}
return true;
}
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
static bool
isIntegerArrayAttrConfinedToShape(VectorStridedSliceOp op, ArrayAttr arrayAttr,
ShapedType shape, StringRef attrName,
bool halfOpen = true, int64_t min = 0) {
assert(arrayAttr.size() <= static_cast<unsigned>(shape.getRank()));
for (auto it : llvm::zip(arrayAttr, shape.getShape())) {
auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
auto max = std::get<1>(it);
if (!halfOpen)
max += 1;
if (val < min || val >= max) {
op.emitOpError("expected ")
<< attrName << " to be confined to [" << min << ", " << max << ")";
return false;
}
}
return true;
}
// Returns true if all integers in `arrayAttr` are in the interval [min, max}.
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
static bool isSumOfIntegerArrayAttrConfinedToShape(
VectorStridedSliceOp op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
ShapedType shape, StringRef attrName1, StringRef attrName2,
bool halfOpen = true, int64_t min = 1) {
assert(arrayAttr1.size() <= static_cast<unsigned>(shape.getRank()));
assert(arrayAttr2.size() <= static_cast<unsigned>(shape.getRank()));
for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape.getShape())) {
auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
auto max = std::get<2>(it);
if (!halfOpen)
max += 1;
if (val1 + val2 < 0 || val1 + val2 >= max) {
op.emitOpError("expected sum(")
<< attrName1 << ", " << attrName2 << ") to be confined to [" << min
<< ", " << max << ")";
return false;
}
}
return true;
}
static LogicalResult verify(VectorStridedSliceOp op) {
auto type = op.getVectorType();
auto offsets = op.offsets();
auto sizes = op.sizes();
auto strides = op.strides();
if (offsets.size() != sizes.size() || offsets.size() != strides.size()) {
op.emitOpError(
"expected offsets, sizes and strides attributes of same size");
return failure();
}
auto offName = VectorStridedSliceOp::getOffsetsAttrName();
auto sizesName = VectorStridedSliceOp::getSizesAttrName();
auto stridesName = VectorStridedSliceOp::getStridesAttrName();
if (!isIntegerArrayAttrSmallerThanShape(op, offsets, type, offName) ||
!isIntegerArrayAttrSmallerThanShape(op, sizes, type, sizesName) ||
!isIntegerArrayAttrSmallerThanShape(op, strides, type, stridesName) ||
!isIntegerArrayAttrConfinedToShape(op, offsets, type, offName) ||
!isIntegerArrayAttrConfinedToShape(op, sizes, type, sizesName,
/*halfOpen=*/false, /*min=*/1) ||
!isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
/*halfOpen=*/false) ||
!isSumOfIntegerArrayAttrConfinedToShape(op, offsets, sizes, type, offName,
sizesName, /*halfOpen=*/false))
return failure();
auto resultType = inferVectorExtractRangeOpResultType(
op.getVectorType(), op.offsets(), op.sizes(), op.strides());
if (op.getResult()->getType() != resultType) {
op.emitOpError("expected result type to be ") << resultType;
return failure();
}
return success();
}
//===----------------------------------------------------------------------===//
// VectorOuterProductOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, VectorOuterProductOp op) {
p << op.getOperationName() << " " << *op.lhs() << ", " << *op.rhs();
if (llvm::size(op.acc()) > 0)
p << ", " << **op.acc().begin();
p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType();
}
static ParseResult parseVectorOuterProductOp(OpAsmParser &parser,
OperationState &result) {
SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
Type tLHS, tRHS;
if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) ||
parser.parseComma() || parser.parseType(tRHS))
return failure();
if (operandsInfo.size() < 2)
return parser.emitError(parser.getNameLoc(),
"expected at least 2 operands");
VectorType vLHS = tLHS.dyn_cast<VectorType>();
VectorType vRHS = tRHS.dyn_cast<VectorType>();
if (!vLHS || !vRHS)
return parser.emitError(parser.getNameLoc(), "expected 2 vector types");
VectorType resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
vLHS.getElementType());
return failure(
parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
(operandsInfo.size() > 2 &&
parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
parser.addTypeToList(resType, result.types));
}
static LogicalResult verify(VectorOuterProductOp op) {
VectorType vLHS = op.getOperandVectorTypeLHS(),
vRHS = op.getOperandVectorTypeRHS(),
vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType();
if (vLHS.getRank() != 1)
return op.emitOpError("expected 1-d vector for operand #1");
if (vRHS.getRank() != 1)
return op.emitOpError("expected 1-d vector for operand #2");
if (vRES.getRank() != 2)
return op.emitOpError("expected 2-d vector result");
if (vLHS.getDimSize(0) != vRES.getDimSize(0))
return op.emitOpError("expected #1 operand dim to match result dim #1");
if (vRHS.getDimSize(0) != vRES.getDimSize(1))
return op.emitOpError("expected #2 operand dim to match result dim #2");
if (vACC && vACC != vRES)
return op.emitOpError("expected operand #3 of same type as result type");
return success();
}
//===----------------------------------------------------------------------===//
// VectorTransferReadOp
//===----------------------------------------------------------------------===//
template <typename EmitFun>
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
EmitFun emitOpError) {
SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
for (auto expr : permutationMap.getResults()) {
auto dim = expr.dyn_cast<AffineDimExpr>();
auto zero = expr.dyn_cast<AffineConstantExpr>();
if (zero) {
if (zero.getValue() != 0) {
return emitOpError(
"requires a projected permutation_map (at most one dim or the zero "
"constant can appear in each result)");
}
continue;
}
if (!dim) {
return emitOpError("requires a projected permutation_map (at most one "
"dim or the zero constant can appear in each result)");
}
if (seen[dim.getPosition()]) {
return emitOpError(
"requires a permutation_map that is a permutation (found one dim "
"used more than once)");
}
seen[dim.getPosition()] = true;
}
return success();
}
static void print(OpAsmPrinter &p, VectorTransferReadOp op) {
p << op.getOperationName() << " ";
p.printOperand(op.memref());
p << "[";
p.printOperands(op.indices());
p << "], ";
p.printOperand(op.padding());
p << " ";
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getMemRefType();
p << ", " << op.getVectorType();
}
ParseResult parseVectorTransferReadOp(OpAsmParser &parser,
OperationState &result) {
llvm::SMLoc typesLoc;
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 8> indexInfo;
OpAsmParser::OperandType paddingInfo;
SmallVector<Type, 2> types;
// Parsing with support for optional paddingValue.
if (parser.parseOperand(memrefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(paddingInfo) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
return failure();
if (types.size() != 2)
return parser.emitError(typesLoc, "two types required");
auto indexType = parser.getBuilder().getIndexType();
MemRefType memRefType = types[0].dyn_cast<MemRefType>();
if (!memRefType)
return parser.emitError(typesLoc, "memref type required"), failure();
Type vectorType = types[1];
return failure(
parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
parser.resolveOperands(indexInfo, indexType, result.operands) ||
parser.resolveOperand(paddingInfo, memRefType.getElementType(),
result.operands) ||
parser.addTypeToList(vectorType, result.types));
}
static LogicalResult verify(VectorTransferReadOp op) {
// Consistency of elemental types in memref and vector.
MemRefType memrefType = op.getMemRefType();
VectorType vectorType = op.getVectorType();
if (memrefType.getElementType() != vectorType.getElementType())
return op.emitOpError(
"requires memref and vector types of the same elemental type");
auto elementalType = op.padding()->getType();
if (!VectorType::isValidElementType(elementalType))
return op.emitOpError("requires valid padding vector elemental type");
if (elementalType != vectorType.getElementType())
return op.emitOpError(
"requires formal padding and vector of the same elemental type");
if (llvm::size(op.indices()) != memrefType.getRank())
return op.emitOpError("requires ") << memrefType.getRank() << " indices";
auto permutationMap = op.permutation_map();
if (permutationMap.getNumSymbols() != 0)
return op.emitOpError("requires permutation_map without symbols");
if (permutationMap.getNumInputs() != memrefType.getRank())
return op.emitOpError("requires a permutation_map with input dims of the "
"same rank as the memref type");
if (permutationMap.getNumResults() != vectorType.getRank())
return op.emitOpError("requires a permutation_map with result dims of the "
"same rank as the vector type");
return verifyPermutationMap(permutationMap,
[&op](Twine t) { return op.emitOpError(t); });
}
//===----------------------------------------------------------------------===//
// VectorTransferWriteOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, VectorTransferWriteOp op) {
p << op.getOperationName() << " " << *op.vector() << ", " << *op.memref();
p << "[";
p.printOperands(op.indices());
p << "]";
p.printOptionalAttrDict(op.getAttrs());
p << " : ";
p.printType(op.getVectorType());
p << ", ";
p.printType(op.getMemRefType());
}
ParseResult parseVectorTransferWriteOp(OpAsmParser &parser,
OperationState &result) {
llvm::SMLoc typesLoc;
OpAsmParser::OperandType storeValueInfo;
OpAsmParser::OperandType memRefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
SmallVector<Type, 2> types;
if (parser.parseOperand(storeValueInfo) || parser.parseComma() ||
parser.parseOperand(memRefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
return failure();
if (types.size() != 2)
return parser.emitError(typesLoc, "two types required");
auto indexType = parser.getBuilder().getIndexType();
Type vectorType = types[0], memRefType = types[1];
return failure(
parser.resolveOperand(storeValueInfo, vectorType, result.operands) ||
parser.resolveOperand(memRefInfo, memRefType, result.operands) ||
parser.resolveOperands(indexInfo, indexType, result.operands));
}
static LogicalResult verify(VectorTransferWriteOp op) {
// Consistency of elemental types in memref and vector.
MemRefType memrefType = op.getMemRefType();
VectorType vectorType = op.getVectorType();
if (memrefType.getElementType() != vectorType.getElementType())
return op.emitOpError(
"requires memref and vector types of the same elemental type");
if (llvm::size(op.indices()) != memrefType.getRank())
return op.emitOpError("requires ") << memrefType.getRank() << " indices";
// Consistency of AffineMap attribute.
auto permutationMap = op.permutation_map();
if (permutationMap.getNumSymbols() != 0)
return op.emitOpError("requires a symbol-less permutation_map");
if (permutationMap.getNumInputs() != memrefType.getRank())
return op.emitOpError("requires a permutation_map with input dims of the "
"same rank as the memref type: ")
<< permutationMap.getNumInputs() << " vs " << memrefType;
if (permutationMap.getNumResults() != vectorType.getRank())
return op.emitOpError("requires a permutation_map with result dims of the "
"same rank as the vector type.")
<< permutationMap.getNumResults() << " vs " << vectorType;
return verifyPermutationMap(permutationMap,
[&op](Twine t) { return op.emitOpError(t); });
}
//===----------------------------------------------------------------------===//
// VectorTypeCastOp
//===----------------------------------------------------------------------===//
static MemRefType inferVectorTypeCastResultType(MemRefType t) {
return MemRefType::get({}, VectorType::get(t.getShape(), t.getElementType()));
}
void VectorTypeCastOp::build(Builder *builder, OperationState &result,
Value *source) {
result.addOperands(source);
result.addTypes(
inferVectorTypeCastResultType(source->getType().cast<MemRefType>()));
}
static void print(OpAsmPrinter &p, VectorTypeCastOp &op) {
auto type = op.getOperand()->getType().cast<MemRefType>();
p << op.getOperationName() << ' ' << *op.memref() << " : " << type << " to "
<< inferVectorTypeCastResultType(type);
}
static LogicalResult verify(VectorTypeCastOp &op) {
auto resultType = inferVectorTypeCastResultType(op.getMemRefType());
if (op.getResultMemRefType() != resultType)
return op.emitOpError("expects result type to be: ") << resultType;
return success();
}
namespace mlir {
#define GET_OP_CLASSES
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
} // namespace mlir