mirror of
https://github.com/intel/llvm.git
synced 2026-01-28 10:14:27 +08:00
The `vector.strided_slice` takes an n-D vector, k-D `offsets` integer array attribute, a
k-D `sizes` integer array attribute, a k-D `strides` integer array attribute and extracts
the n-D subvector at the proper offset.
Returns an n-D vector where the first k-D dimensions match the `sizes` attribute.
The returned subvector contains the elements starting at offset `offsets` and ending at
`offsets + sizes`.
Example:
```
%1 = vector.strided_slice %0
{offsets : [0, 2], sizes : [2, 4], strides : [1, 1]}:
vector<4x8x16xf32> // returns a vector<2x4x16xf32>
```
This op will be useful for progressive lowering within the VectorOp dialect.
PiperOrigin-RevId: 281352749
550 lines
23 KiB
C++
550 lines
23 KiB
C++
//===- VectorOps.cpp - MLIR Super Vectorizer Operations -------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements convenience types for working with super-vectorization
|
|
// operations, in particular super-vector loads and stores.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/VectorOps/VectorOps.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::vector;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorOpsDialect
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
mlir::vector::VectorOpsDialect::VectorOpsDialect(MLIRContext *context)
|
|
: Dialect(getDialectNamespace(), context) {
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
|
|
>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorExtractElementOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Type inferExtractOpResultType(VectorType vectorType,
|
|
ArrayAttr position) {
|
|
if (static_cast<int64_t>(position.size()) == vectorType.getRank())
|
|
return vectorType.getElementType();
|
|
return VectorType::get(vectorType.getShape().drop_front(position.size()),
|
|
vectorType.getElementType());
|
|
}
|
|
|
|
void VectorExtractElementOp::build(Builder *builder, OperationState &result,
|
|
Value *source, ArrayRef<int32_t> position) {
|
|
result.addOperands(source);
|
|
auto positionAttr = builder->getI32ArrayAttr(position);
|
|
result.addTypes(inferExtractOpResultType(source->getType().cast<VectorType>(),
|
|
positionAttr));
|
|
result.addAttribute(getPositionAttrName(), positionAttr);
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, VectorExtractElementOp op) {
|
|
p << op.getOperationName() << " " << *op.vector() << op.position();
|
|
p.printOptionalAttrDict(op.getAttrs(), {"position"});
|
|
p << " : " << op.vector()->getType();
|
|
}
|
|
|
|
static ParseResult parseVectorExtractElementOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
llvm::SMLoc attributeLoc, typeLoc;
|
|
SmallVector<NamedAttribute, 4> attrs;
|
|
OpAsmParser::OperandType vector;
|
|
Type type;
|
|
Attribute attr;
|
|
if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) ||
|
|
parser.parseAttribute(attr, "position", attrs) ||
|
|
parser.parseOptionalAttrDict(attrs) ||
|
|
parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type))
|
|
return failure();
|
|
|
|
auto vectorType = type.dyn_cast<VectorType>();
|
|
if (!vectorType)
|
|
return parser.emitError(typeLoc, "expected vector type");
|
|
|
|
auto positionAttr = attr.dyn_cast<ArrayAttr>();
|
|
if (!positionAttr ||
|
|
static_cast<int64_t>(positionAttr.size()) > vectorType.getRank())
|
|
return parser.emitError(
|
|
attributeLoc,
|
|
"expected position attribute of rank smaller than vector rank");
|
|
|
|
Type resType = inferExtractOpResultType(vectorType, positionAttr);
|
|
result.attributes = attrs;
|
|
return failure(parser.resolveOperand(vector, type, result.operands) ||
|
|
parser.addTypeToList(resType, result.types));
|
|
}
|
|
|
|
static LogicalResult verify(VectorExtractElementOp op) {
|
|
auto positionAttr = op.position().getValue();
|
|
if (positionAttr.empty())
|
|
return op.emitOpError("expected non-empty position attribute");
|
|
if (positionAttr.size() > static_cast<unsigned>(op.getVectorType().getRank()))
|
|
return op.emitOpError(
|
|
"expected position attribute of rank smaller than vector rank");
|
|
for (auto en : llvm::enumerate(positionAttr)) {
|
|
auto attr = en.value().dyn_cast<IntegerAttr>();
|
|
if (!attr || attr.getInt() < 0 ||
|
|
attr.getInt() > op.getVectorType().getDimSize(en.index()))
|
|
return op.emitOpError("expected position attribute #")
|
|
<< (en.index() + 1)
|
|
<< " to be a positive integer smaller than the corresponding "
|
|
"vector dimension";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorStridedSliceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Type inferVectorExtractRangeOpResultType(VectorType vectorType,
|
|
ArrayAttr offsets,
|
|
ArrayAttr sizes,
|
|
ArrayAttr strides) {
|
|
assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
|
|
SmallVector<int64_t, 4> shape;
|
|
shape.reserve(vectorType.getRank());
|
|
unsigned idx = 0;
|
|
for (unsigned e = offsets.size(); idx < e; ++idx)
|
|
shape.push_back(sizes.getValue()[idx].cast<IntegerAttr>().getInt());
|
|
for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
|
|
shape.push_back(vectorType.getShape()[idx]);
|
|
|
|
return VectorType::get(shape, vectorType.getElementType());
|
|
}
|
|
|
|
void VectorStridedSliceOp::build(Builder *builder, OperationState &result,
|
|
Value *source, ArrayRef<int64_t> offsets,
|
|
ArrayRef<int64_t> sizes,
|
|
ArrayRef<int64_t> strides) {
|
|
result.addOperands(source);
|
|
auto offsetsAttr = builder->getI64ArrayAttr(offsets);
|
|
auto sizesAttr = builder->getI64ArrayAttr(sizes);
|
|
auto stridesAttr = builder->getI64ArrayAttr(strides);
|
|
result.addTypes(
|
|
inferVectorExtractRangeOpResultType(source->getType().cast<VectorType>(),
|
|
offsetsAttr, sizesAttr, stridesAttr));
|
|
result.addAttribute(getOffsetsAttrName(), offsetsAttr);
|
|
result.addAttribute(getSizesAttrName(), sizesAttr);
|
|
result.addAttribute(getStridesAttrName(), stridesAttr);
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, VectorStridedSliceOp op) {
|
|
p << op.getOperationName() << " " << *op.vector();
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
p << " : " << op.vector()->getType() << " to " << op.getResult()->getType();
|
|
}
|
|
|
|
static ParseResult parseVectorStridedSliceOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
llvm::SMLoc attributeLoc, typeLoc;
|
|
OpAsmParser::OperandType vector;
|
|
VectorType vectorType, resultVectorType;
|
|
return failure(parser.parseOperand(vector) ||
|
|
parser.getCurrentLocation(&attributeLoc) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.getCurrentLocation(&typeLoc) ||
|
|
parser.parseColonType(vectorType) ||
|
|
parser.parseKeywordType("to", resultVectorType) ||
|
|
parser.resolveOperand(vector, vectorType, result.operands) ||
|
|
parser.addTypeToList(resultVectorType, result.types));
|
|
}
|
|
|
|
// TODO(ntv) Should be moved to Tablegen Confined attributes.
|
|
static bool isIntegerArrayAttrSmallerThanShape(VectorStridedSliceOp op,
|
|
ArrayAttr arrayAttr,
|
|
ShapedType shape,
|
|
StringRef attrName) {
|
|
if (arrayAttr.size() > static_cast<unsigned>(shape.getRank())) {
|
|
op.emitOpError("expected ")
|
|
<< attrName << " attribute of rank smaller than vector rank";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
|
|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
|
|
// Otherwise, the admissible interval is [min, max].
|
|
static bool isIntegerArrayAttrConfinedToRange(VectorStridedSliceOp op,
|
|
ArrayAttr arrayAttr, int64_t min,
|
|
int64_t max, StringRef attrName,
|
|
bool halfOpen = true) {
|
|
for (auto attr : arrayAttr) {
|
|
auto val = attr.cast<IntegerAttr>().getInt();
|
|
auto upper = max;
|
|
if (!halfOpen)
|
|
upper += 1;
|
|
if (val < min || val >= upper) {
|
|
op.emitOpError("expected ")
|
|
<< attrName << " to be confined to [" << min << ", " << upper << ")";
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
|
|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
|
|
// Otherwise, the admissible interval is [min, max].
|
|
static bool
|
|
isIntegerArrayAttrConfinedToShape(VectorStridedSliceOp op, ArrayAttr arrayAttr,
|
|
ShapedType shape, StringRef attrName,
|
|
bool halfOpen = true, int64_t min = 0) {
|
|
assert(arrayAttr.size() <= static_cast<unsigned>(shape.getRank()));
|
|
for (auto it : llvm::zip(arrayAttr, shape.getShape())) {
|
|
auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
|
|
auto max = std::get<1>(it);
|
|
if (!halfOpen)
|
|
max += 1;
|
|
if (val < min || val >= max) {
|
|
op.emitOpError("expected ")
|
|
<< attrName << " to be confined to [" << min << ", " << max << ")";
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true if all integers in `arrayAttr` are in the interval [min, max}.
|
|
// interval. If `halfOpen` is true then the admissible interval is [min, max).
|
|
// Otherwise, the admissible interval is [min, max].
|
|
static bool isSumOfIntegerArrayAttrConfinedToShape(
|
|
VectorStridedSliceOp op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
|
|
ShapedType shape, StringRef attrName1, StringRef attrName2,
|
|
bool halfOpen = true, int64_t min = 1) {
|
|
assert(arrayAttr1.size() <= static_cast<unsigned>(shape.getRank()));
|
|
assert(arrayAttr2.size() <= static_cast<unsigned>(shape.getRank()));
|
|
for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape.getShape())) {
|
|
auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
|
|
auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
|
|
auto max = std::get<2>(it);
|
|
if (!halfOpen)
|
|
max += 1;
|
|
if (val1 + val2 < 0 || val1 + val2 >= max) {
|
|
op.emitOpError("expected sum(")
|
|
<< attrName1 << ", " << attrName2 << ") to be confined to [" << min
|
|
<< ", " << max << ")";
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static LogicalResult verify(VectorStridedSliceOp op) {
|
|
auto type = op.getVectorType();
|
|
auto offsets = op.offsets();
|
|
auto sizes = op.sizes();
|
|
auto strides = op.strides();
|
|
if (offsets.size() != sizes.size() || offsets.size() != strides.size()) {
|
|
op.emitOpError(
|
|
"expected offsets, sizes and strides attributes of same size");
|
|
return failure();
|
|
}
|
|
|
|
auto offName = VectorStridedSliceOp::getOffsetsAttrName();
|
|
auto sizesName = VectorStridedSliceOp::getSizesAttrName();
|
|
auto stridesName = VectorStridedSliceOp::getStridesAttrName();
|
|
if (!isIntegerArrayAttrSmallerThanShape(op, offsets, type, offName) ||
|
|
!isIntegerArrayAttrSmallerThanShape(op, sizes, type, sizesName) ||
|
|
!isIntegerArrayAttrSmallerThanShape(op, strides, type, stridesName) ||
|
|
!isIntegerArrayAttrConfinedToShape(op, offsets, type, offName) ||
|
|
!isIntegerArrayAttrConfinedToShape(op, sizes, type, sizesName,
|
|
/*halfOpen=*/false, /*min=*/1) ||
|
|
!isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
|
|
/*halfOpen=*/false) ||
|
|
!isSumOfIntegerArrayAttrConfinedToShape(op, offsets, sizes, type, offName,
|
|
sizesName, /*halfOpen=*/false))
|
|
return failure();
|
|
|
|
auto resultType = inferVectorExtractRangeOpResultType(
|
|
op.getVectorType(), op.offsets(), op.sizes(), op.strides());
|
|
if (op.getResult()->getType() != resultType) {
|
|
op.emitOpError("expected result type to be ") << resultType;
|
|
return failure();
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorOuterProductOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void print(OpAsmPrinter &p, VectorOuterProductOp op) {
|
|
p << op.getOperationName() << " " << *op.lhs() << ", " << *op.rhs();
|
|
if (llvm::size(op.acc()) > 0)
|
|
p << ", " << **op.acc().begin();
|
|
p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType();
|
|
}
|
|
|
|
static ParseResult parseVectorOuterProductOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
|
|
Type tLHS, tRHS;
|
|
if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) ||
|
|
parser.parseComma() || parser.parseType(tRHS))
|
|
return failure();
|
|
if (operandsInfo.size() < 2)
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected at least 2 operands");
|
|
VectorType vLHS = tLHS.dyn_cast<VectorType>();
|
|
VectorType vRHS = tRHS.dyn_cast<VectorType>();
|
|
if (!vLHS || !vRHS)
|
|
return parser.emitError(parser.getNameLoc(), "expected 2 vector types");
|
|
VectorType resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
|
|
vLHS.getElementType());
|
|
return failure(
|
|
parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
|
|
parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
|
|
(operandsInfo.size() > 2 &&
|
|
parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
|
|
parser.addTypeToList(resType, result.types));
|
|
}
|
|
|
|
static LogicalResult verify(VectorOuterProductOp op) {
|
|
VectorType vLHS = op.getOperandVectorTypeLHS(),
|
|
vRHS = op.getOperandVectorTypeRHS(),
|
|
vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType();
|
|
if (vLHS.getRank() != 1)
|
|
return op.emitOpError("expected 1-d vector for operand #1");
|
|
if (vRHS.getRank() != 1)
|
|
return op.emitOpError("expected 1-d vector for operand #2");
|
|
if (vRES.getRank() != 2)
|
|
return op.emitOpError("expected 2-d vector result");
|
|
if (vLHS.getDimSize(0) != vRES.getDimSize(0))
|
|
return op.emitOpError("expected #1 operand dim to match result dim #1");
|
|
if (vRHS.getDimSize(0) != vRES.getDimSize(1))
|
|
return op.emitOpError("expected #2 operand dim to match result dim #2");
|
|
if (vACC && vACC != vRES)
|
|
return op.emitOpError("expected operand #3 of same type as result type");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorTransferReadOp
|
|
//===----------------------------------------------------------------------===//
|
|
template <typename EmitFun>
|
|
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
|
|
EmitFun emitOpError) {
|
|
SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
|
|
for (auto expr : permutationMap.getResults()) {
|
|
auto dim = expr.dyn_cast<AffineDimExpr>();
|
|
auto zero = expr.dyn_cast<AffineConstantExpr>();
|
|
if (zero) {
|
|
if (zero.getValue() != 0) {
|
|
return emitOpError(
|
|
"requires a projected permutation_map (at most one dim or the zero "
|
|
"constant can appear in each result)");
|
|
}
|
|
continue;
|
|
}
|
|
if (!dim) {
|
|
return emitOpError("requires a projected permutation_map (at most one "
|
|
"dim or the zero constant can appear in each result)");
|
|
}
|
|
if (seen[dim.getPosition()]) {
|
|
return emitOpError(
|
|
"requires a permutation_map that is a permutation (found one dim "
|
|
"used more than once)");
|
|
}
|
|
seen[dim.getPosition()] = true;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, VectorTransferReadOp op) {
|
|
p << op.getOperationName() << " ";
|
|
p.printOperand(op.memref());
|
|
p << "[";
|
|
p.printOperands(op.indices());
|
|
p << "], ";
|
|
p.printOperand(op.padding());
|
|
p << " ";
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
p << " : " << op.getMemRefType();
|
|
p << ", " << op.getVectorType();
|
|
}
|
|
|
|
ParseResult parseVectorTransferReadOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
llvm::SMLoc typesLoc;
|
|
OpAsmParser::OperandType memrefInfo;
|
|
SmallVector<OpAsmParser::OperandType, 8> indexInfo;
|
|
OpAsmParser::OperandType paddingInfo;
|
|
SmallVector<Type, 2> types;
|
|
// Parsing with support for optional paddingValue.
|
|
if (parser.parseOperand(memrefInfo) ||
|
|
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
|
|
parser.parseComma() || parser.parseOperand(paddingInfo) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
|
|
return failure();
|
|
if (types.size() != 2)
|
|
return parser.emitError(typesLoc, "two types required");
|
|
auto indexType = parser.getBuilder().getIndexType();
|
|
MemRefType memRefType = types[0].dyn_cast<MemRefType>();
|
|
if (!memRefType)
|
|
return parser.emitError(typesLoc, "memref type required"), failure();
|
|
Type vectorType = types[1];
|
|
return failure(
|
|
parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
|
|
parser.resolveOperands(indexInfo, indexType, result.operands) ||
|
|
parser.resolveOperand(paddingInfo, memRefType.getElementType(),
|
|
result.operands) ||
|
|
parser.addTypeToList(vectorType, result.types));
|
|
}
|
|
|
|
static LogicalResult verify(VectorTransferReadOp op) {
|
|
// Consistency of elemental types in memref and vector.
|
|
MemRefType memrefType = op.getMemRefType();
|
|
VectorType vectorType = op.getVectorType();
|
|
if (memrefType.getElementType() != vectorType.getElementType())
|
|
return op.emitOpError(
|
|
"requires memref and vector types of the same elemental type");
|
|
auto elementalType = op.padding()->getType();
|
|
if (!VectorType::isValidElementType(elementalType))
|
|
return op.emitOpError("requires valid padding vector elemental type");
|
|
if (elementalType != vectorType.getElementType())
|
|
return op.emitOpError(
|
|
"requires formal padding and vector of the same elemental type");
|
|
if (llvm::size(op.indices()) != memrefType.getRank())
|
|
return op.emitOpError("requires ") << memrefType.getRank() << " indices";
|
|
auto permutationMap = op.permutation_map();
|
|
if (permutationMap.getNumSymbols() != 0)
|
|
return op.emitOpError("requires permutation_map without symbols");
|
|
if (permutationMap.getNumInputs() != memrefType.getRank())
|
|
return op.emitOpError("requires a permutation_map with input dims of the "
|
|
"same rank as the memref type");
|
|
if (permutationMap.getNumResults() != vectorType.getRank())
|
|
return op.emitOpError("requires a permutation_map with result dims of the "
|
|
"same rank as the vector type");
|
|
return verifyPermutationMap(permutationMap,
|
|
[&op](Twine t) { return op.emitOpError(t); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorTransferWriteOp
|
|
//===----------------------------------------------------------------------===//
|
|
static void print(OpAsmPrinter &p, VectorTransferWriteOp op) {
|
|
p << op.getOperationName() << " " << *op.vector() << ", " << *op.memref();
|
|
p << "[";
|
|
p.printOperands(op.indices());
|
|
p << "]";
|
|
p.printOptionalAttrDict(op.getAttrs());
|
|
p << " : ";
|
|
p.printType(op.getVectorType());
|
|
p << ", ";
|
|
p.printType(op.getMemRefType());
|
|
}
|
|
|
|
ParseResult parseVectorTransferWriteOp(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
llvm::SMLoc typesLoc;
|
|
OpAsmParser::OperandType storeValueInfo;
|
|
OpAsmParser::OperandType memRefInfo;
|
|
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
|
|
SmallVector<Type, 2> types;
|
|
if (parser.parseOperand(storeValueInfo) || parser.parseComma() ||
|
|
parser.parseOperand(memRefInfo) ||
|
|
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
|
|
parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
|
|
return failure();
|
|
if (types.size() != 2)
|
|
return parser.emitError(typesLoc, "two types required");
|
|
auto indexType = parser.getBuilder().getIndexType();
|
|
Type vectorType = types[0], memRefType = types[1];
|
|
return failure(
|
|
parser.resolveOperand(storeValueInfo, vectorType, result.operands) ||
|
|
parser.resolveOperand(memRefInfo, memRefType, result.operands) ||
|
|
parser.resolveOperands(indexInfo, indexType, result.operands));
|
|
}
|
|
|
|
static LogicalResult verify(VectorTransferWriteOp op) {
|
|
// Consistency of elemental types in memref and vector.
|
|
MemRefType memrefType = op.getMemRefType();
|
|
VectorType vectorType = op.getVectorType();
|
|
if (memrefType.getElementType() != vectorType.getElementType())
|
|
return op.emitOpError(
|
|
"requires memref and vector types of the same elemental type");
|
|
if (llvm::size(op.indices()) != memrefType.getRank())
|
|
return op.emitOpError("requires ") << memrefType.getRank() << " indices";
|
|
|
|
// Consistency of AffineMap attribute.
|
|
auto permutationMap = op.permutation_map();
|
|
if (permutationMap.getNumSymbols() != 0)
|
|
return op.emitOpError("requires a symbol-less permutation_map");
|
|
if (permutationMap.getNumInputs() != memrefType.getRank())
|
|
return op.emitOpError("requires a permutation_map with input dims of the "
|
|
"same rank as the memref type: ")
|
|
<< permutationMap.getNumInputs() << " vs " << memrefType;
|
|
if (permutationMap.getNumResults() != vectorType.getRank())
|
|
return op.emitOpError("requires a permutation_map with result dims of the "
|
|
"same rank as the vector type.")
|
|
<< permutationMap.getNumResults() << " vs " << vectorType;
|
|
return verifyPermutationMap(permutationMap,
|
|
[&op](Twine t) { return op.emitOpError(t); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// VectorTypeCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static MemRefType inferVectorTypeCastResultType(MemRefType t) {
|
|
return MemRefType::get({}, VectorType::get(t.getShape(), t.getElementType()));
|
|
}
|
|
|
|
void VectorTypeCastOp::build(Builder *builder, OperationState &result,
|
|
Value *source) {
|
|
result.addOperands(source);
|
|
result.addTypes(
|
|
inferVectorTypeCastResultType(source->getType().cast<MemRefType>()));
|
|
}
|
|
|
|
static void print(OpAsmPrinter &p, VectorTypeCastOp &op) {
|
|
auto type = op.getOperand()->getType().cast<MemRefType>();
|
|
p << op.getOperationName() << ' ' << *op.memref() << " : " << type << " to "
|
|
<< inferVectorTypeCastResultType(type);
|
|
}
|
|
|
|
static LogicalResult verify(VectorTypeCastOp &op) {
|
|
auto resultType = inferVectorTypeCastResultType(op.getMemRefType());
|
|
if (op.getResultMemRefType() != resultType)
|
|
return op.emitOpError("expects result type to be: ") << resultType;
|
|
return success();
|
|
}
|
|
|
|
namespace mlir {
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
|
|
|
|
} // namespace mlir
|