Files
llvm/lldb/source/ValueObject/DILEval.cpp
cmtice 728cada359 [LLDB] Add type casting to DIL, part 1 of 3. (#165199)
This is an alternative to
https://github.com/llvm/llvm-project/pull/159500, breaking that PR down
into three separate PRs, to make it easier to review.

This first PR of the three adds the basic framework for doing type
casing to the DIL code, but it does not actually do any casting: In this
PR the DIL parser only recognizes builtin type names, and the DIL
interpreter does not do anything except return the original operand (no
casting). The second and third PRs will add most of the type parsing,
and do the actual type casting, respectively.
2025-12-01 20:08:19 -08:00

756 lines
29 KiB
C++

//===-- DILEval.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/ValueObject/DILEval.h"
#include "lldb/Core/Module.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/TypeSystem.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/ValueObject/DILAST.h"
#include "lldb/ValueObject/ValueObject.h"
#include "lldb/ValueObject/ValueObjectRegister.h"
#include "lldb/ValueObject/ValueObjectVariable.h"
#include "llvm/Support/FormatAdapters.h"
#include <memory>
namespace lldb_private::dil {
static llvm::Expected<lldb::TypeSystemSP>
GetTypeSystemFromCU(std::shared_ptr<ExecutionContextScope> ctx) {
auto stack_frame = ctx->CalculateStackFrame();
if (!stack_frame)
return llvm::createStringError("no stack frame in this context");
SymbolContext symbol_context =
stack_frame->GetSymbolContext(lldb::eSymbolContextCompUnit);
lldb::LanguageType language = symbol_context.comp_unit->GetLanguage();
symbol_context = stack_frame->GetSymbolContext(lldb::eSymbolContextModule);
return symbol_context.module_sp->GetTypeSystemForLanguage(language);
}
static CompilerType GetBasicType(lldb::TypeSystemSP type_system,
lldb::BasicType basic_type) {
if (type_system)
return type_system.get()->GetBasicTypeFromAST(basic_type);
return CompilerType();
}
static lldb::ValueObjectSP
ArrayToPointerConversion(ValueObject &valobj, ExecutionContextScope &ctx) {
uint64_t addr = valobj.GetLoadAddress();
ExecutionContext exe_ctx;
ctx.CalculateExecutionContext(exe_ctx);
return ValueObject::CreateValueObjectFromAddress(
"result", addr, exe_ctx,
valobj.GetCompilerType().GetArrayElementType(&ctx).GetPointerType(),
/* do_deref */ false);
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::UnaryConversion(lldb::ValueObjectSP valobj, uint32_t location) {
if (!valobj)
return llvm::make_error<DILDiagnosticError>(m_expr, "invalid value object",
location);
llvm::Expected<lldb::TypeSystemSP> type_system =
GetTypeSystemFromCU(m_exe_ctx_scope);
if (!type_system)
return type_system.takeError();
CompilerType in_type = valobj->GetCompilerType();
if (valobj->IsBitfield()) {
// Promote bitfields. If `int` can represent the bitfield value, it is
// converted to `int`. Otherwise, if `unsigned int` can represent it, it
// is converted to `unsigned int`. Otherwise, it is treated as its
// underlying type.
uint32_t bitfield_size = valobj->GetBitfieldBitSize();
// Some bitfields have undefined size (e.g. result of ternary operation).
// The AST's `bitfield_size` of those is 0, and no promotion takes place.
if (bitfield_size > 0 && in_type.IsInteger()) {
CompilerType int_type = GetBasicType(*type_system, lldb::eBasicTypeInt);
CompilerType uint_type =
GetBasicType(*type_system, lldb::eBasicTypeUnsignedInt);
llvm::Expected<uint64_t> int_bit_size =
int_type.GetBitSize(m_exe_ctx_scope.get());
if (!int_bit_size)
return int_bit_size.takeError();
llvm::Expected<uint64_t> uint_bit_size =
uint_type.GetBitSize(m_exe_ctx_scope.get());
if (!uint_bit_size)
return int_bit_size.takeError();
if (bitfield_size < *int_bit_size ||
(in_type.IsSigned() && bitfield_size == *int_bit_size))
return valobj->CastToBasicType(int_type);
if (bitfield_size <= *uint_bit_size)
return valobj->CastToBasicType(uint_type);
// Re-create as a const value with the same underlying type
Scalar scalar;
bool resolved = valobj->ResolveValue(scalar);
if (!resolved)
return llvm::createStringError("invalid scalar value");
return ValueObject::CreateValueObjectFromScalar(m_target, scalar, in_type,
"result");
}
}
if (in_type.IsArrayType())
valobj = ArrayToPointerConversion(*valobj, *m_exe_ctx_scope);
if (valobj->GetCompilerType().IsInteger() ||
valobj->GetCompilerType().IsUnscopedEnumerationType()) {
llvm::Expected<CompilerType> promoted_type =
type_system.get()->DoIntegralPromotion(valobj->GetCompilerType(),
m_exe_ctx_scope.get());
if (!promoted_type)
return promoted_type.takeError();
if (!promoted_type->CompareTypes(valobj->GetCompilerType()))
return valobj->CastToBasicType(*promoted_type);
}
return valobj;
}
static lldb::VariableSP DILFindVariable(ConstString name,
VariableList &variable_list) {
lldb::VariableSP exact_match;
std::vector<lldb::VariableSP> possible_matches;
for (lldb::VariableSP var_sp : variable_list) {
llvm::StringRef str_ref_name = var_sp->GetName().GetStringRef();
str_ref_name.consume_front("::");
// Check for the exact same match
if (str_ref_name == name.GetStringRef())
return var_sp;
// Check for possible matches by base name
if (var_sp->NameMatches(name))
possible_matches.push_back(var_sp);
}
// If there's a non-exact match, take it.
if (possible_matches.size() > 0)
return possible_matches[0];
return nullptr;
}
lldb::ValueObjectSP LookupGlobalIdentifier(
llvm::StringRef name_ref, std::shared_ptr<StackFrame> stack_frame,
lldb::TargetSP target_sp, lldb::DynamicValueType use_dynamic) {
// Get a global variables list without the locals from the current frame
SymbolContext symbol_context =
stack_frame->GetSymbolContext(lldb::eSymbolContextCompUnit);
lldb::VariableListSP variable_list;
if (symbol_context.comp_unit)
variable_list = symbol_context.comp_unit->GetVariableList(true);
name_ref.consume_front("::");
lldb::ValueObjectSP value_sp;
if (variable_list) {
lldb::VariableSP var_sp =
DILFindVariable(ConstString(name_ref), *variable_list);
if (var_sp)
value_sp =
stack_frame->GetValueObjectForFrameVariable(var_sp, use_dynamic);
}
if (value_sp)
return value_sp;
// Check for match in modules global variables.
VariableList modules_var_list;
target_sp->GetImages().FindGlobalVariables(
ConstString(name_ref), std::numeric_limits<uint32_t>::max(),
modules_var_list);
if (!modules_var_list.Empty()) {
lldb::VariableSP var_sp =
DILFindVariable(ConstString(name_ref), modules_var_list);
if (var_sp)
value_sp = ValueObjectVariable::Create(stack_frame.get(), var_sp);
if (value_sp)
return value_sp;
}
return nullptr;
}
lldb::ValueObjectSP LookupIdentifier(llvm::StringRef name_ref,
std::shared_ptr<StackFrame> stack_frame,
lldb::DynamicValueType use_dynamic) {
// Support $rax as a special syntax for accessing registers.
// Will return an invalid value in case the requested register doesn't exist.
if (name_ref.consume_front("$")) {
lldb::RegisterContextSP reg_ctx(stack_frame->GetRegisterContext());
if (!reg_ctx)
return nullptr;
if (const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName(name_ref))
return ValueObjectRegister::Create(stack_frame.get(), reg_ctx, reg_info);
return nullptr;
}
if (!name_ref.contains("::")) {
// Lookup in the current frame.
// Try looking for a local variable in current scope.
lldb::VariableListSP variable_list(
stack_frame->GetInScopeVariableList(false));
lldb::ValueObjectSP value_sp;
if (variable_list) {
lldb::VariableSP var_sp =
variable_list->FindVariable(ConstString(name_ref));
if (var_sp)
value_sp =
stack_frame->GetValueObjectForFrameVariable(var_sp, use_dynamic);
}
if (value_sp)
return value_sp;
// Try looking for an instance variable (class member).
SymbolContext sc = stack_frame->GetSymbolContext(
lldb::eSymbolContextFunction | lldb::eSymbolContextBlock);
llvm::StringRef ivar_name = sc.GetInstanceVariableName();
value_sp = stack_frame->FindVariable(ConstString(ivar_name));
if (value_sp)
value_sp = value_sp->GetChildMemberWithName(name_ref);
if (value_sp)
return value_sp;
}
return nullptr;
}
Interpreter::Interpreter(lldb::TargetSP target, llvm::StringRef expr,
std::shared_ptr<StackFrame> frame_sp,
lldb::DynamicValueType use_dynamic, bool use_synthetic,
bool fragile_ivar, bool check_ptr_vs_member)
: m_target(std::move(target)), m_expr(expr), m_exe_ctx_scope(frame_sp),
m_use_dynamic(use_dynamic), m_use_synthetic(use_synthetic),
m_fragile_ivar(fragile_ivar), m_check_ptr_vs_member(check_ptr_vs_member) {
}
llvm::Expected<lldb::ValueObjectSP> Interpreter::Evaluate(const ASTNode *node) {
// Evaluate an AST.
auto value_or_error = node->Accept(this);
// Convert SP with a nullptr to an error.
if (value_or_error && !*value_or_error)
return llvm::make_error<DILDiagnosticError>(m_expr, "invalid value object",
node->GetLocation());
// Return the computed value-or-error. The caller is responsible for
// checking if an error occured during the evaluation.
return value_or_error;
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::Visit(const IdentifierNode *node) {
lldb::DynamicValueType use_dynamic = m_use_dynamic;
lldb::ValueObjectSP identifier =
LookupIdentifier(node->GetName(), m_exe_ctx_scope, use_dynamic);
if (!identifier)
identifier = LookupGlobalIdentifier(node->GetName(), m_exe_ctx_scope,
m_target, use_dynamic);
if (!identifier) {
std::string errMsg =
llvm::formatv("use of undeclared identifier '{0}'", node->GetName());
return llvm::make_error<DILDiagnosticError>(
m_expr, errMsg, node->GetLocation(), node->GetName().size());
}
return identifier;
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::Visit(const UnaryOpNode *node) {
Status error;
auto op_or_err = Evaluate(node->GetOperand());
if (!op_or_err)
return op_or_err;
lldb::ValueObjectSP operand = *op_or_err;
switch (node->GetKind()) {
case UnaryOpKind::Deref: {
lldb::ValueObjectSP dynamic_op = operand->GetDynamicValue(m_use_dynamic);
if (dynamic_op)
operand = dynamic_op;
lldb::ValueObjectSP child_sp = operand->Dereference(error);
if (!child_sp && m_use_synthetic) {
if (lldb::ValueObjectSP synth_obj_sp = operand->GetSyntheticValue()) {
error.Clear();
child_sp = synth_obj_sp->Dereference(error);
}
}
if (error.Fail())
return llvm::make_error<DILDiagnosticError>(m_expr, error.AsCString(),
node->GetLocation());
return child_sp;
}
case UnaryOpKind::AddrOf: {
Status error;
lldb::ValueObjectSP value = operand->AddressOf(error);
if (error.Fail())
return llvm::make_error<DILDiagnosticError>(m_expr, error.AsCString(),
node->GetLocation());
return value;
}
case UnaryOpKind::Minus: {
if (operand->GetCompilerType().IsReferenceType()) {
operand = operand->Dereference(error);
if (error.Fail())
return error.ToError();
}
llvm::Expected<lldb::ValueObjectSP> conv_op =
UnaryConversion(operand, node->GetOperand()->GetLocation());
if (!conv_op)
return conv_op;
operand = *conv_op;
CompilerType operand_type = operand->GetCompilerType();
if (!operand_type.IsScalarType()) {
std::string errMsg =
llvm::formatv("invalid argument type '{0}' to unary expression",
operand_type.GetTypeName());
return llvm::make_error<DILDiagnosticError>(m_expr, errMsg,
node->GetLocation());
}
Scalar scalar;
bool resolved = operand->ResolveValue(scalar);
if (!resolved)
break;
bool negated = scalar.UnaryNegate();
if (negated)
return ValueObject::CreateValueObjectFromScalar(
m_target, scalar, operand->GetCompilerType(), "result");
break;
}
case UnaryOpKind::Plus: {
if (operand->GetCompilerType().IsReferenceType()) {
operand = operand->Dereference(error);
if (error.Fail())
return error.ToError();
}
llvm::Expected<lldb::ValueObjectSP> conv_op =
UnaryConversion(operand, node->GetOperand()->GetLocation());
if (!conv_op)
return conv_op;
operand = *conv_op;
CompilerType operand_type = operand->GetCompilerType();
if (!operand_type.IsScalarType() &&
// Unary plus is allowed for pointers.
!operand_type.IsPointerType()) {
std::string errMsg =
llvm::formatv("invalid argument type '{0}' to unary expression",
operand_type.GetTypeName());
return llvm::make_error<DILDiagnosticError>(m_expr, errMsg,
node->GetLocation());
}
return operand;
}
}
return llvm::make_error<DILDiagnosticError>(m_expr, "invalid unary operation",
node->GetLocation());
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::Visit(const MemberOfNode *node) {
auto base_or_err = Evaluate(node->GetBase());
if (!base_or_err)
return base_or_err;
bool expr_is_ptr = node->GetIsArrow();
lldb::ValueObjectSP base = *base_or_err;
// Perform some basic type & correctness checking.
if (node->GetIsArrow()) {
if (!m_fragile_ivar) {
// Make sure we aren't trying to deref an objective
// C ivar if this is not allowed
const uint32_t pointer_type_flags =
base->GetCompilerType().GetTypeInfo(nullptr);
if ((pointer_type_flags & lldb::eTypeIsObjC) &&
(pointer_type_flags & lldb::eTypeIsPointer)) {
// This was an objective C object pointer and it was requested we
// skip any fragile ivars so return nothing here
return lldb::ValueObjectSP();
}
}
// If we have a non-pointer type with a synthetic value then lets check
// if we have a synthetic dereference specified.
if (!base->IsPointerType() && base->HasSyntheticValue()) {
Status deref_error;
if (lldb::ValueObjectSP synth_deref_sp =
base->GetSyntheticValue()->Dereference(deref_error);
synth_deref_sp && deref_error.Success()) {
base = std::move(synth_deref_sp);
}
if (!base || deref_error.Fail()) {
std::string errMsg = llvm::formatv(
"Failed to dereference synthetic value: {0}", deref_error);
return llvm::make_error<DILDiagnosticError>(
m_expr, errMsg, node->GetLocation(), node->GetFieldName().size());
}
// Some synthetic plug-ins fail to set the error in Dereference
if (!base) {
std::string errMsg = "Failed to dereference synthetic value";
return llvm::make_error<DILDiagnosticError>(
m_expr, errMsg, node->GetLocation(), node->GetFieldName().size());
}
expr_is_ptr = false;
}
}
if (m_check_ptr_vs_member) {
bool base_is_ptr = base->IsPointerType();
if (expr_is_ptr != base_is_ptr) {
if (base_is_ptr) {
std::string errMsg =
llvm::formatv("member reference type {0} is a pointer; "
"did you mean to use '->'?",
base->GetCompilerType().TypeDescription());
return llvm::make_error<DILDiagnosticError>(
m_expr, errMsg, node->GetLocation(), node->GetFieldName().size());
} else {
std::string errMsg =
llvm::formatv("member reference type {0} is not a pointer; "
"did you mean to use '.'?",
base->GetCompilerType().TypeDescription());
return llvm::make_error<DILDiagnosticError>(
m_expr, errMsg, node->GetLocation(), node->GetFieldName().size());
}
}
}
lldb::ValueObjectSP field_obj =
base->GetChildMemberWithName(node->GetFieldName());
if (!field_obj) {
if (m_use_synthetic) {
field_obj = base->GetSyntheticValue();
if (field_obj)
field_obj = field_obj->GetChildMemberWithName(node->GetFieldName());
}
if (!m_use_synthetic || !field_obj) {
std::string errMsg = llvm::formatv(
"\"{0}\" is not a member of \"({1}) {2}\"", node->GetFieldName(),
base->GetTypeName().AsCString("<invalid type>"), base->GetName());
return llvm::make_error<DILDiagnosticError>(
m_expr, errMsg, node->GetLocation(), node->GetFieldName().size());
}
}
if (field_obj) {
if (m_use_dynamic != lldb::eNoDynamicValues) {
lldb::ValueObjectSP dynamic_val_sp =
field_obj->GetDynamicValue(m_use_dynamic);
if (dynamic_val_sp)
field_obj = dynamic_val_sp;
}
return field_obj;
}
CompilerType base_type = base->GetCompilerType();
if (node->GetIsArrow() && base->IsPointerType())
base_type = base_type.GetPointeeType();
std::string errMsg = llvm::formatv(
"\"{0}\" is not a member of \"({1}) {2}\"", node->GetFieldName(),
base->GetTypeName().AsCString("<invalid type>"), base->GetName());
return llvm::make_error<DILDiagnosticError>(
m_expr, errMsg, node->GetLocation(), node->GetFieldName().size());
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::Visit(const ArraySubscriptNode *node) {
auto lhs_or_err = Evaluate(node->GetBase());
if (!lhs_or_err)
return lhs_or_err;
lldb::ValueObjectSP base = *lhs_or_err;
StreamString var_expr_path_strm;
uint64_t child_idx = node->GetIndex();
lldb::ValueObjectSP child_valobj_sp;
bool is_incomplete_array = false;
CompilerType base_type = base->GetCompilerType().GetNonReferenceType();
base->GetExpressionPath(var_expr_path_strm);
if (base_type.IsPointerType()) {
bool is_objc_pointer = true;
if (base->GetCompilerType().GetMinimumLanguage() != lldb::eLanguageTypeObjC)
is_objc_pointer = false;
else if (!base->GetCompilerType().IsPointerType())
is_objc_pointer = false;
if (!m_use_synthetic && is_objc_pointer) {
std::string err_msg = llvm::formatv(
"\"({0}) {1}\" is an Objective-C pointer, and cannot be subscripted",
base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation());
}
if (is_objc_pointer) {
lldb::ValueObjectSP synthetic = base->GetSyntheticValue();
if (!synthetic || synthetic == base) {
std::string err_msg =
llvm::formatv("\"({0}) {1}\" is not an array type",
base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation());
}
if (static_cast<uint32_t>(child_idx) >=
synthetic->GetNumChildrenIgnoringErrors()) {
std::string err_msg = llvm::formatv(
"array index {0} is not valid for \"({1}) {2}\"", child_idx,
base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation());
}
child_valobj_sp = synthetic->GetChildAtIndex(child_idx);
if (!child_valobj_sp) {
std::string err_msg = llvm::formatv(
"array index {0} is not valid for \"({1}) {2}\"", child_idx,
base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation());
}
if (m_use_dynamic != lldb::eNoDynamicValues) {
if (auto dynamic_sp = child_valobj_sp->GetDynamicValue(m_use_dynamic))
child_valobj_sp = std::move(dynamic_sp);
}
return child_valobj_sp;
}
child_valobj_sp = base->GetSyntheticArrayMember(child_idx, true);
if (!child_valobj_sp) {
std::string err_msg = llvm::formatv(
"failed to use pointer as array for index {0} for "
"\"({1}) {2}\"",
child_idx, base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
if (base_type.IsPointerToVoid())
err_msg = "subscript of pointer to incomplete type 'void'";
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation());
}
} else if (base_type.IsArrayType(nullptr, nullptr, &is_incomplete_array)) {
child_valobj_sp = base->GetChildAtIndex(child_idx);
if (!child_valobj_sp && (is_incomplete_array || m_use_synthetic))
child_valobj_sp = base->GetSyntheticArrayMember(child_idx, true);
if (!child_valobj_sp) {
std::string err_msg = llvm::formatv(
"array index {0} is not valid for \"({1}) {2}\"", child_idx,
base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation());
}
} else if (base_type.IsScalarType()) {
child_valobj_sp =
base->GetSyntheticBitFieldChild(child_idx, child_idx, true);
if (!child_valobj_sp) {
std::string err_msg = llvm::formatv(
"bitfield range {0}-{1} is not valid for \"({2}) {3}\"", child_idx,
child_idx, base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation(), 1);
}
} else {
lldb::ValueObjectSP synthetic = base->GetSyntheticValue();
if (!m_use_synthetic || !synthetic || synthetic == base) {
std::string err_msg =
llvm::formatv("\"{0}\" is not an array type",
base->GetTypeName().AsCString("<invalid type>"));
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation(), 1);
}
if (static_cast<uint32_t>(child_idx) >=
synthetic->GetNumChildrenIgnoringErrors(child_idx + 1)) {
std::string err_msg = llvm::formatv(
"array index {0} is not valid for \"({1}) {2}\"", child_idx,
base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation(), 1);
}
child_valobj_sp = synthetic->GetChildAtIndex(child_idx);
if (!child_valobj_sp) {
std::string err_msg = llvm::formatv(
"array index {0} is not valid for \"({1}) {2}\"", child_idx,
base->GetTypeName().AsCString("<invalid type>"),
var_expr_path_strm.GetData());
return llvm::make_error<DILDiagnosticError>(m_expr, std::move(err_msg),
node->GetLocation(), 1);
}
}
if (child_valobj_sp) {
if (m_use_dynamic != lldb::eNoDynamicValues) {
if (auto dynamic_sp = child_valobj_sp->GetDynamicValue(m_use_dynamic))
child_valobj_sp = std::move(dynamic_sp);
}
return child_valobj_sp;
}
int64_t signed_child_idx = node->GetIndex();
return base->GetSyntheticArrayMember(signed_child_idx, true);
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::Visit(const BitFieldExtractionNode *node) {
auto lhs_or_err = Evaluate(node->GetBase());
if (!lhs_or_err)
return lhs_or_err;
lldb::ValueObjectSP base = *lhs_or_err;
int64_t first_index = node->GetFirstIndex();
int64_t last_index = node->GetLastIndex();
// if the format given is [high-low], swap range
if (first_index > last_index)
std::swap(first_index, last_index);
Status error;
if (base->GetCompilerType().IsReferenceType()) {
base = base->Dereference(error);
if (error.Fail())
return error.ToError();
}
lldb::ValueObjectSP child_valobj_sp =
base->GetSyntheticBitFieldChild(first_index, last_index, true);
if (!child_valobj_sp) {
std::string message = llvm::formatv(
"bitfield range {0}-{1} is not valid for \"({2}) {3}\"", first_index,
last_index, base->GetTypeName().AsCString("<invalid type>"),
base->GetName().AsCString());
return llvm::make_error<DILDiagnosticError>(m_expr, message,
node->GetLocation());
}
return child_valobj_sp;
}
llvm::Expected<CompilerType>
Interpreter::PickIntegerType(lldb::TypeSystemSP type_system,
std::shared_ptr<ExecutionContextScope> ctx,
const IntegerLiteralNode *literal) {
// Binary, Octal, Hexadecimal and literals with a U suffix are allowed to be
// an unsigned integer.
bool unsigned_is_allowed = literal->IsUnsigned() || literal->GetRadix() != 10;
llvm::APInt apint = literal->GetValue();
llvm::SmallVector<std::pair<lldb::BasicType, lldb::BasicType>, 3> candidates;
if (literal->GetTypeSuffix() <= IntegerTypeSuffix::None)
candidates.emplace_back(lldb::eBasicTypeInt,
unsigned_is_allowed ? lldb::eBasicTypeUnsignedInt
: lldb::eBasicTypeInvalid);
if (literal->GetTypeSuffix() <= IntegerTypeSuffix::Long)
candidates.emplace_back(lldb::eBasicTypeLong,
unsigned_is_allowed ? lldb::eBasicTypeUnsignedLong
: lldb::eBasicTypeInvalid);
candidates.emplace_back(lldb::eBasicTypeLongLong,
lldb::eBasicTypeUnsignedLongLong);
for (auto [signed_, unsigned_] : candidates) {
CompilerType signed_type = type_system->GetBasicTypeFromAST(signed_);
if (!signed_type)
continue;
llvm::Expected<uint64_t> size = signed_type.GetBitSize(ctx.get());
if (!size)
return size.takeError();
if (!literal->IsUnsigned() && apint.isIntN(*size - 1))
return signed_type;
if (unsigned_ != lldb::eBasicTypeInvalid && apint.isIntN(*size))
return type_system->GetBasicTypeFromAST(unsigned_);
}
return llvm::make_error<DILDiagnosticError>(
m_expr,
"integer literal is too large to be represented in any integer type",
literal->GetLocation());
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::Visit(const IntegerLiteralNode *node) {
llvm::Expected<lldb::TypeSystemSP> type_system =
GetTypeSystemFromCU(m_exe_ctx_scope);
if (!type_system)
return type_system.takeError();
llvm::Expected<CompilerType> type =
PickIntegerType(*type_system, m_exe_ctx_scope, node);
if (!type)
return type.takeError();
Scalar scalar = node->GetValue();
// APInt from StringRef::getAsInteger comes with just enough bitwidth to
// hold the value. This adjusts APInt bitwidth to match the compiler type.
llvm::Expected<uint64_t> type_bitsize =
type->GetBitSize(m_exe_ctx_scope.get());
if (!type_bitsize)
return type_bitsize.takeError();
scalar.TruncOrExtendTo(*type_bitsize, false);
return ValueObject::CreateValueObjectFromScalar(m_target, scalar, *type,
"result");
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::Visit(const FloatLiteralNode *node) {
llvm::Expected<lldb::TypeSystemSP> type_system =
GetTypeSystemFromCU(m_exe_ctx_scope);
if (!type_system)
return type_system.takeError();
bool isFloat =
&node->GetValue().getSemantics() == &llvm::APFloat::IEEEsingle();
lldb::BasicType basic_type =
isFloat ? lldb::eBasicTypeFloat : lldb::eBasicTypeDouble;
CompilerType type = GetBasicType(*type_system, basic_type);
if (!type)
return llvm::make_error<DILDiagnosticError>(
m_expr, "unable to create a const literal", node->GetLocation());
Scalar scalar = node->GetValue();
return ValueObject::CreateValueObjectFromScalar(m_target, scalar, type,
"result");
}
llvm::Expected<lldb::ValueObjectSP>
Interpreter::Visit(const BooleanLiteralNode *node) {
bool value = node->GetValue();
return ValueObject::CreateValueObjectFromBool(m_target, value, "result");
}
llvm::Expected<lldb::ValueObjectSP> Interpreter::Visit(const CastNode *node) {
auto operand_or_err = Evaluate(node->GetOperand());
if (!operand_or_err)
return operand_or_err;
lldb::ValueObjectSP operand = *operand_or_err;
// Don't actually do the cast for now -- that code will be added later.
// For now just return an error message.
return llvm::make_error<DILDiagnosticError>(
m_expr, "Type casting is not supported here.", node->GetLocation());
}
} // namespace lldb_private::dil