compute-runtime/level_zero/core/source/event/event.cpp

273 lines
9.8 KiB
C++
Raw Normal View History

/*
* Copyright (C) 2019-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/core/source/event/event.h"
#include "shared/source/command_stream/command_stream_receiver_hw.h"
#include "shared/source/command_stream/csr_definitions.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/execution_environment/execution_environment.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/helpers/constants.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/memory_operations_handler.h"
#include "shared/source/utilities/cpuintrinsics.h"
#include "level_zero/core/source/device/device.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/tools/source/metrics/metric.h"
#include <queue>
#include <unordered_map>
namespace L0 {
struct EventPoolImp : public EventPool {
EventPoolImp(DriverHandle *driver, uint32_t numDevices, ze_device_handle_t *phDevices, uint32_t numEvents, ze_event_pool_flags_t flags) : numEvents(numEvents) {
if (flags & ZE_EVENT_POOL_FLAG_KERNEL_TIMESTAMP) {
isEventPoolUsedForTimestamp = true;
}
ze_device_handle_t hDevice;
if (numDevices > 0) {
hDevice = phDevices[0];
} else {
uint32_t count = 1;
ze_result_t result = driver->getDevice(&count, &hDevice);
UNRECOVERABLE_IF(result != ZE_RESULT_SUCCESS);
}
device = Device::fromHandle(hDevice);
NEO::AllocationProperties properties(
device->getRootDeviceIndex(), numEvents * eventSize,
isEventPoolUsedForTimestamp ? NEO::GraphicsAllocation::AllocationType::TIMESTAMP_PACKET_TAG_BUFFER
: NEO::GraphicsAllocation::AllocationType::BUFFER_HOST_MEMORY,
device->getNEODevice()->getDeviceBitfield());
properties.alignment = MemoryConstants::cacheLineSize;
eventPoolAllocation = driver->getMemoryManager()->allocateGraphicsMemoryWithProperties(properties);
UNRECOVERABLE_IF(eventPoolAllocation == nullptr);
}
~EventPoolImp() override {
device->getDriverHandle()->getMemoryManager()->freeGraphicsMemory(eventPoolAllocation);
eventPoolAllocation = nullptr;
}
ze_result_t destroy() override;
ze_result_t getIpcHandle(ze_ipc_event_pool_handle_t *pIpcHandle) override;
ze_result_t closeIpcHandle() override;
ze_result_t createEvent(const ze_event_desc_t *desc, ze_event_handle_t *phEvent) override {
if (desc->index > (getNumEvents() - 1)) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
*phEvent = Event::create(this, desc, this->getDevice());
return ZE_RESULT_SUCCESS;
}
uint32_t getEventSize() override { return eventSize; }
size_t getNumEvents() { return numEvents; }
Device *getDevice() override { return device; }
Device *device;
size_t numEvents;
protected:
const uint32_t eventSize = static_cast<uint32_t>(alignUp(sizeof(struct KernelTimestampEvent),
MemoryConstants::cacheLineSize));
const uint32_t eventAlignment = MemoryConstants::cacheLineSize;
};
Event *Event::create(EventPool *eventPool, const ze_event_desc_t *desc, Device *device) {
auto event = new EventImp(eventPool, desc->index, device);
UNRECOVERABLE_IF(event == nullptr);
if (eventPool->isEventPoolUsedForTimestamp) {
event->isTimestampEvent = true;
}
uint64_t baseHostAddr = reinterpret_cast<uint64_t>(eventPool->getAllocation().getUnderlyingBuffer());
event->hostAddress = reinterpret_cast<void *>(baseHostAddr + (desc->index * eventPool->getEventSize()));
event->gpuAddress = eventPool->getAllocation().getGpuAddress() + (desc->index * eventPool->getEventSize());
event->signalScope = desc->signal;
event->waitScope = desc->wait;
event->csr = static_cast<DeviceImp *>(device)->neoDevice->getDefaultEngine().commandStreamReceiver;
event->reset();
return event;
}
NEO::GraphicsAllocation &Event::getAllocation() {
auto eventImp = static_cast<EventImp *>(this);
return eventImp->eventPool->getAllocation();
}
ze_result_t Event::destroy() {
delete this;
return ZE_RESULT_SUCCESS;
}
ze_result_t EventImp::queryStatus() {
uint64_t *hostAddr = static_cast<uint64_t *>(hostAddress);
uint32_t queryVal = Event::STATE_CLEARED;
if (metricStreamer != nullptr) {
*hostAddr = metricStreamer->getNotificationState();
}
this->csr->downloadAllocations();
if (isTimestampEvent) {
auto baseAddr = reinterpret_cast<uint64_t>(hostAddress);
auto timeStampAddress = baseAddr + offsetof(KernelTimestampEvent, contextEnd);
hostAddr = reinterpret_cast<uint64_t *>(timeStampAddress);
}
memcpy_s(static_cast<void *>(&queryVal), sizeof(uint32_t), static_cast<void *>(hostAddr), sizeof(uint32_t));
return queryVal == Event::STATE_CLEARED ? ZE_RESULT_NOT_READY : ZE_RESULT_SUCCESS;
}
ze_result_t EventImp::hostEventSetValueTimestamps(uint32_t eventVal) {
auto baseAddr = reinterpret_cast<uint64_t>(hostAddress);
auto signalScopeFlag = this->signalScope;
auto eventTsSetFunc = [&](auto tsAddr) {
auto tsptr = reinterpret_cast<void *>(tsAddr);
memcpy_s(tsptr, sizeof(uint32_t), static_cast<void *>(&eventVal), sizeof(uint32_t));
if (!signalScopeFlag) {
NEO::CpuIntrinsics::clFlush(tsptr);
}
};
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, contextStart));
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, globalStart));
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, contextEnd));
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, globalEnd));
return ZE_RESULT_SUCCESS;
}
ze_result_t EventImp::hostEventSetValue(uint32_t eventVal) {
if (isTimestampEvent) {
return hostEventSetValueTimestamps(eventVal);
}
auto hostAddr = static_cast<uint64_t *>(hostAddress);
UNRECOVERABLE_IF(hostAddr == nullptr);
memcpy_s(static_cast<void *>(hostAddr), sizeof(uint32_t), static_cast<void *>(&eventVal), sizeof(uint32_t));
NEO::CpuIntrinsics::clFlush(hostAddr);
return ZE_RESULT_SUCCESS;
}
ze_result_t EventImp::hostSignal() {
return hostEventSetValue(Event::STATE_SIGNALED);
}
ze_result_t EventImp::hostSynchronize(uint64_t timeout) {
std::chrono::high_resolution_clock::time_point time1, time2;
uint64_t timeDiff = 0;
ze_result_t ret = ZE_RESULT_NOT_READY;
if (this->csr->getType() == NEO::CommandStreamReceiverType::CSR_AUB) {
return ZE_RESULT_SUCCESS;
}
if (timeout == 0) {
return queryStatus();
}
time1 = std::chrono::high_resolution_clock::now();
while (true) {
ret = queryStatus();
if (ret == ZE_RESULT_SUCCESS) {
return ZE_RESULT_SUCCESS;
}
std::this_thread::yield();
NEO::CpuIntrinsics::pause();
if (timeout == std::numeric_limits<uint32_t>::max()) {
continue;
}
time2 = std::chrono::high_resolution_clock::now();
timeDiff = std::chrono::duration_cast<std::chrono::nanoseconds>(time2 - time1).count();
if (timeDiff >= timeout) {
break;
}
}
return ret;
}
ze_result_t EventImp::reset() {
return hostEventSetValue(Event::STATE_INITIAL);
}
ze_result_t EventImp::queryKernelTimestamp(ze_kernel_timestamp_result_t *dstptr) {
auto baseAddr = reinterpret_cast<uint64_t>(hostAddress);
constexpr uint64_t tsMask = (1ull << 32) - 1;
uint64_t tsData = Event::STATE_INITIAL & tsMask;
ze_kernel_timestamp_result_t &result = *dstptr;
// Ensure timestamps have been written
if (queryStatus() != ZE_RESULT_SUCCESS) {
return ZE_RESULT_NOT_READY;
}
auto eventTsSetFunc = [&](auto tsAddr, uint64_t &timestampField) {
memcpy_s(static_cast<void *>(&tsData), sizeof(uint32_t), reinterpret_cast<void *>(tsAddr), sizeof(uint32_t));
tsData &= tsMask;
memcpy_s(&(timestampField), sizeof(uint64_t), static_cast<void *>(&tsData), sizeof(uint64_t));
};
if (!NEO::HwHelper::get(device->getHwInfo().platform.eRenderCoreFamily).useOnlyGlobalTimestamps()) {
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, contextStart), result.context.kernelStart);
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, globalStart), result.global.kernelStart);
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, contextEnd), result.context.kernelEnd);
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, globalEnd), result.global.kernelEnd);
} else {
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, globalStart), result.context.kernelStart);
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, globalStart), result.global.kernelStart);
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, globalEnd), result.context.kernelEnd);
eventTsSetFunc(baseAddr + offsetof(KernelTimestampEvent, globalEnd), result.global.kernelEnd);
}
return ZE_RESULT_SUCCESS;
}
EventPool *EventPool::create(DriverHandle *driver, uint32_t numDevices,
ze_device_handle_t *phDevices,
const ze_event_pool_desc_t *desc) {
return new EventPoolImp(driver, numDevices, phDevices, desc->count, desc->flags);
}
ze_result_t EventPoolImp::getIpcHandle(ze_ipc_event_pool_handle_t *pIpcHandle) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t EventPoolImp::closeIpcHandle() { return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE; }
ze_result_t EventPoolImp::destroy() {
delete this;
return ZE_RESULT_SUCCESS;
}
} // namespace L0