compute-runtime/offline_compiler/decoder/binary_encoder.cpp

434 lines
17 KiB
C++

/*
* Copyright (C) 2018-2019 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "binary_encoder.h"
#include "core/elf/writer.h"
#include "core/helpers/aligned_memory.h"
#include "core/helpers/file_io.h"
#include "core/helpers/hash.h"
#include "offline_compiler/offline_compiler.h"
#include "CL/cl.h"
#include "helper.h"
#include <algorithm>
#include <cstring>
#include <fstream>
#include <sstream>
void BinaryEncoder::setMessagePrinter(const MessagePrinter &messagePrinter) {
this->messagePrinter = messagePrinter;
}
void BinaryEncoder::calculatePatchListSizes(std::vector<std::string> &ptmFile) {
size_t patchListPos = 0;
for (size_t i = 0; i < ptmFile.size(); ++i) {
if (ptmFile[i].find("PatchListSize") != std::string::npos) {
patchListPos = i;
} else if (ptmFile[i].find("PATCH_TOKEN") != std::string::npos) {
uint32_t calcSize = 0;
i++;
while (i < ptmFile.size() && ptmFile[i].find("Kernel #") == std::string::npos) {
if (ptmFile[i].find(':') == std::string::npos) {
if (ptmFile[i].find("Hex") != std::string::npos) {
calcSize += static_cast<uint32_t>(std::count(ptmFile[i].begin(), ptmFile[i].end(), ' '));
} else {
calcSize += std::atoi(&ptmFile[i][1]);
}
}
i++;
}
uint32_t size = static_cast<uint32_t>(std::stoul(ptmFile[patchListPos].substr(ptmFile[patchListPos].find_last_of(' ') + 1)));
if (size != calcSize) {
messagePrinter.printf("Warning! Calculated PatchListSize ( %u ) differs from file ( %u ) - changing it. Line %d\n", calcSize, size, static_cast<int>(patchListPos + 1));
ptmFile[patchListPos] = ptmFile[patchListPos].substr(0, ptmFile[patchListPos].find_last_of(' ') + 1);
ptmFile[patchListPos] += std::to_string(calcSize);
}
}
}
}
bool BinaryEncoder::copyBinaryToBinary(const std::string &srcFileName, std::ostream &outBinary, uint32_t *binaryLength) {
std::ifstream ifs(srcFileName, std::ios::binary);
if (!ifs.good()) {
messagePrinter.printf("Cannot open %s.\n", srcFileName.c_str());
return false;
}
ifs.seekg(0, ifs.end);
auto length = static_cast<size_t>(ifs.tellg());
ifs.seekg(0, ifs.beg);
std::vector<char> binary(length);
ifs.read(binary.data(), length);
outBinary.write(binary.data(), length);
if (binaryLength) {
*binaryLength = static_cast<uint32_t>(length);
}
return true;
}
int BinaryEncoder::createElf() {
CLElfLib::CElfWriter elfWriter(CLElfLib::E_EH_TYPE::EH_TYPE_OPENCL_EXECUTABLE, CLElfLib::E_EH_MACHINE::EH_MACHINE_NONE, 0);
//Build Options
if (fileExists(pathToDump + "build.bin")) {
auto binary = readBinaryFile(pathToDump + "build.bin");
std::string data(binary.begin(), binary.end());
elfWriter.addSection(CLElfLib::SSectionNode(CLElfLib::E_SH_TYPE::SH_TYPE_OPENCL_OPTIONS,
CLElfLib::E_SH_FLAG::SH_FLAG_NONE,
"BuildOptions",
data,
static_cast<uint32_t>(data.size())));
} else {
messagePrinter.printf("Warning! Missing build section.\n");
}
//LLVM or SPIRV
if (fileExists(pathToDump + "llvm.bin")) {
auto binary = readBinaryFile(pathToDump + "llvm.bin");
std::string data(binary.begin(), binary.end());
elfWriter.addSection(CLElfLib::SSectionNode(CLElfLib::E_SH_TYPE::SH_TYPE_OPENCL_LLVM_BINARY,
CLElfLib::E_SH_FLAG::SH_FLAG_NONE,
"Intel(R) OpenCL LLVM Object",
data,
static_cast<uint32_t>(data.size())));
} else if (fileExists(pathToDump + "spirv.bin")) {
auto binary = readBinaryFile(pathToDump + "spirv.bin");
std::string data(binary.begin(), binary.end());
elfWriter.addSection(CLElfLib::SSectionNode(CLElfLib::E_SH_TYPE::SH_TYPE_SPIRV,
CLElfLib::E_SH_FLAG::SH_FLAG_NONE,
"SPIRV Object",
data,
static_cast<uint32_t>(data.size())));
} else {
messagePrinter.printf("Warning! Missing llvm/spirv section.\n");
}
//Device Binary
if (fileExists(pathToDump + "device_binary.bin")) {
auto binary = readBinaryFile(pathToDump + "device_binary.bin");
std::string data(binary.begin(), binary.end());
elfWriter.addSection(CLElfLib::SSectionNode(CLElfLib::E_SH_TYPE::SH_TYPE_OPENCL_DEV_BINARY,
CLElfLib::E_SH_FLAG::SH_FLAG_NONE,
"Intel(R) OpenCL Device Binary",
data,
static_cast<uint32_t>(data.size())));
} else {
messagePrinter.printf("Missing device_binary.bin\n");
return -1;
}
//Resolve Elf Binary
std::vector<char> elfBinary;
elfWriter.resolveBinary(elfBinary);
std::ofstream elfFile(elfName, std::ios::binary);
if (!elfFile.good()) {
messagePrinter.printf("Couldn't create %s.\n", elfName.c_str());
return -1;
}
elfFile.write(elfBinary.data(), elfBinary.size());
return 0;
}
void BinaryEncoder::printHelp() {
messagePrinter.printf(R"===(Assembles Intel OpenCL GPU device binary from input files.
It's expected that input files were previously generated by 'ocloc disasm'
command or are compatible with 'ocloc disasm' output (especially in terms of
file naming scheme). See 'ocloc disasm --help' for additional info.
Usage: ocloc asm -out <out_file> [-dump <dump_dir>] [-device <device_type>]
-out <out_file> Filename for newly assembled binary.
-dump <dumping_dir> Path to the input directory containing
disassembled binary (as disassembled
by ocloc's disasm command).
Default is './dump'.
-device <device_type> Optional target device of output binary
<device_type> can be: %s
By default ocloc will pick base device within
a generation - i.e. both skl and kbl will
fallback to skl. If specific product (e.g. kbl)
is needed, provide it as device_type.
--help Print this usage message.
Examples:
Assemble to Intel OpenCL GPU device binary
ocloc asm -out reassembled.bin
)===",
NEO::getDevicesTypes().c_str());
}
int BinaryEncoder::encode() {
std::vector<std::string> ptmFile;
readFileToVectorOfStrings(ptmFile, pathToDump + "PTM.txt");
calculatePatchListSizes(ptmFile);
std::ofstream deviceBinary(pathToDump + "device_binary.bin", std::ios::binary);
if (!deviceBinary.good()) {
messagePrinter.printf("Error! Couldn't create device_binary.bin.\n");
return -1;
}
int retVal = processBinary(ptmFile, deviceBinary);
deviceBinary.close();
if (retVal != CL_SUCCESS) {
return retVal;
}
return createElf();
}
int BinaryEncoder::processBinary(const std::vector<std::string> &ptmFileLines, std::ostream &deviceBinary) {
if (false == iga->isKnownPlatform()) {
auto deviceMarker = findPos(ptmFileLines, "Device");
if (deviceMarker != ptmFileLines.size()) {
std::stringstream ss(ptmFileLines[deviceMarker]);
ss.ignore(32, ' ');
ss.ignore(32, ' ');
uint32_t gfxCore = 0;
ss >> gfxCore;
iga->setGfxCore(static_cast<GFXCORE_FAMILY>(gfxCore));
}
}
size_t i = 0;
while (i < ptmFileLines.size()) {
if (ptmFileLines[i].find("Kernel #") != std::string::npos) {
if (processKernel(++i, ptmFileLines, deviceBinary)) {
messagePrinter.printf("Warning while processing kernel!\n");
return -1;
}
} else if (writeDeviceBinary(ptmFileLines[i++], deviceBinary)) {
messagePrinter.printf("Error while writing to binary!\n");
return -1;
}
}
return 0;
}
void BinaryEncoder::addPadding(std::ostream &out, size_t numBytes) {
for (size_t i = 0; i < numBytes; ++i) {
const char nullByte = 0;
out.write(&nullByte, 1U);
}
}
int BinaryEncoder::processKernel(size_t &line, const std::vector<std::string> &ptmFileLines, std::ostream &deviceBinary) {
auto kernelInfoBeginMarker = line;
auto kernelInfoEndMarker = ptmFileLines.size();
auto kernelNameMarker = ptmFileLines.size();
auto kernelPatchtokensMarker = ptmFileLines.size();
std::stringstream kernelBlob;
// Normally these are added by the compiler, need to take or of them when reassembling
constexpr size_t isaPaddingSizeInBytes = 128;
constexpr uint32_t kernelHeapAlignmentInBytes = 64;
uint32_t kernelNameSizeInBinary = 0;
std::string kernelName;
// Scan PTM lines for kernel info
while (line < ptmFileLines.size()) {
if (ptmFileLines[line].find("KernelName ") != std::string::npos) {
kernelName = std::string(ptmFileLines[line], ptmFileLines[line].find(' ') + 1);
kernelNameMarker = line;
kernelPatchtokensMarker = kernelNameMarker + 1; // patchtokens come after name
} else if (ptmFileLines[line].find("KernelNameSize") != std::string::npos) {
std::stringstream ss(ptmFileLines[line]);
ss.ignore(32, ' ');
ss.ignore(32, ' ');
ss >> kernelNameSizeInBinary;
} else if (ptmFileLines[line].find("Kernel #") != std::string::npos) {
kernelInfoEndMarker = line;
break;
}
++line;
}
// Write KernelName and padding
kernelBlob.write(kernelName.c_str(), kernelName.size());
addPadding(kernelBlob, kernelNameSizeInBinary - kernelName.size());
// Write KernelHeap and padding
uint32_t kernelSizeUnpadded = 0U;
bool heapsCopiedSuccesfully = true;
// Use .asm if available, fallback to .dat
if (fileExists(pathToDump + kernelName + "_KernelHeap.asm")) {
auto kernelAsAsm = readBinaryFile(pathToDump + kernelName + "_KernelHeap.asm");
std::string kernelAsBinary;
messagePrinter.printf("Trying to assemble %s.asm\n", kernelName.c_str());
if (false == iga->tryAssembleGenISA(std::string(kernelAsAsm.begin(), kernelAsAsm.end()), kernelAsBinary)) {
messagePrinter.printf("Error : Could not assemble : %s\n", kernelName.c_str());
return -1;
}
kernelSizeUnpadded = static_cast<uint32_t>(kernelAsBinary.size());
kernelBlob.write(kernelAsBinary.data(), kernelAsBinary.size());
} else {
heapsCopiedSuccesfully = copyBinaryToBinary(pathToDump + kernelName + "_KernelHeap.dat", kernelBlob, &kernelSizeUnpadded);
}
// Adding padding and alignment
addPadding(kernelBlob, isaPaddingSizeInBytes);
const uint32_t kernelHeapPaddedSize = kernelSizeUnpadded + isaPaddingSizeInBytes;
const uint32_t kernelHeapAlignedSize = alignUp(kernelHeapPaddedSize, kernelHeapAlignmentInBytes);
addPadding(kernelBlob, kernelHeapAlignedSize - kernelHeapPaddedSize);
// Write GeneralStateHeap, DynamicStateHeap, SurfaceStateHeap
if (fileExists(pathToDump + kernelName + "_GeneralStateHeap.bin")) {
heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_GeneralStateHeap.bin", kernelBlob);
}
heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_DynamicStateHeap.bin", kernelBlob);
heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_SurfaceStateHeap.bin", kernelBlob);
if (false == heapsCopiedSuccesfully) {
return -1;
}
// Write kernel patchtokens
for (size_t i = kernelPatchtokensMarker; i < kernelInfoEndMarker; ++i) {
if (writeDeviceBinary(ptmFileLines[i], kernelBlob)) {
messagePrinter.printf("Error while writing to binary.\n");
return -1;
}
}
auto kernelBlobData = kernelBlob.str();
uint64_t hashValue = NEO::Hash::hash(reinterpret_cast<const char *>(kernelBlobData.data()), kernelBlobData.size());
uint32_t calcCheckSum = hashValue & 0xFFFFFFFF;
// Add kernel header
for (size_t i = kernelInfoBeginMarker; i < kernelNameMarker; ++i) {
if (ptmFileLines[i].find("CheckSum") != std::string::npos) {
static_assert(std::is_same<decltype(calcCheckSum), uint32_t>::value, "");
deviceBinary.write(reinterpret_cast<char *>(&calcCheckSum), sizeof(uint32_t));
} else if (ptmFileLines[i].find("KernelHeapSize") != std::string::npos) {
static_assert(sizeof(kernelHeapAlignedSize) == sizeof(uint32_t), "");
deviceBinary.write(reinterpret_cast<const char *>(&kernelHeapAlignedSize), sizeof(uint32_t));
} else if (ptmFileLines[i].find("KernelUnpaddedSize") != std::string::npos) {
static_assert(sizeof(kernelSizeUnpadded) == sizeof(uint32_t), "");
deviceBinary.write(reinterpret_cast<char *>(&kernelSizeUnpadded), sizeof(uint32_t));
} else {
if (writeDeviceBinary(ptmFileLines[i], deviceBinary)) {
messagePrinter.printf("Error while writing to binary.\n");
return -1;
}
}
}
// Add kernel blob after the header
deviceBinary.write(kernelBlobData.c_str(), kernelBlobData.size());
return 0;
}
int BinaryEncoder::validateInput(uint32_t argc, const char **argv) {
if (!strcmp(argv[argc - 1], "--help")) {
printHelp();
return -1;
} else {
for (uint32_t i = 2; i < argc - 1; ++i) {
if (!strcmp(argv[i], "-dump")) {
pathToDump = std::string(argv[++i]);
addSlash(pathToDump);
} else if (!strcmp(argv[i], "-device")) {
iga->setProductFamily(getProductFamilyFromDeviceName(argv[++i]));
} else if (!strcmp(argv[i], "-out")) {
elfName = std::string(argv[++i]);
} else {
messagePrinter.printf("Unknown argument %s\n", argv[i]);
printHelp();
return -1;
}
}
if (pathToDump.empty()) {
messagePrinter.printf("Warning : Path to dump folder not specificed - using ./dump as default.\n");
pathToDump = "dump";
addSlash(pathToDump);
}
if (elfName.find(".bin") == std::string::npos) {
messagePrinter.printf(".bin extension is expected for binary file.\n");
printHelp();
return -1;
}
if (false == iga->isKnownPlatform()) {
messagePrinter.printf("Warning : missing or invalid -device parameter - results may be inacurate\n");
}
}
return 0;
}
template <typename T>
void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary) {
T val;
in >> val;
deviceBinary.write(reinterpret_cast<const char *>(&val), sizeof(T));
}
template <>
void BinaryEncoder::write<uint8_t>(std::stringstream &in, std::ostream &deviceBinary) {
uint8_t val;
uint16_t help;
in >> help;
val = static_cast<uint8_t>(help);
deviceBinary.write(reinterpret_cast<const char *>(&val), sizeof(uint8_t));
}
template void BinaryEncoder::write<uint16_t>(std::stringstream &in, std::ostream &deviceBinary);
template void BinaryEncoder::write<uint32_t>(std::stringstream &in, std::ostream &deviceBinary);
template void BinaryEncoder::write<uint64_t>(std::stringstream &in, std::ostream &deviceBinary);
int BinaryEncoder::writeDeviceBinary(const std::string &line, std::ostream &deviceBinary) {
if (line.find(':') != std::string::npos) {
return 0;
} else if (line.find("Hex") != std::string::npos) {
std::stringstream ss(line);
ss.ignore(32, ' ');
uint16_t tmp;
uint8_t byte;
while (!ss.eof()) {
ss >> std::hex >> tmp;
byte = static_cast<uint8_t>(tmp);
deviceBinary.write(reinterpret_cast<const char *>(&byte), sizeof(uint8_t));
}
} else {
std::stringstream ss(line);
uint16_t size;
std::string name;
ss >> size;
ss >> name;
switch (size) {
case 1:
write<uint8_t>(ss, deviceBinary);
break;
case 2:
write<uint16_t>(ss, deviceBinary);
break;
case 4:
write<uint32_t>(ss, deviceBinary);
break;
case 8:
write<uint64_t>(ss, deviceBinary);
break;
default:
messagePrinter.printf("Unknown size in line: %s\n", line.c_str());
return -1;
}
}
return 0;
}
bool BinaryEncoder::fileExists(const std::string &path) const {
return ::fileExists(path);
}
std::vector<char> BinaryEncoder::readBinaryFile(const std::string &path) const {
return ::readBinaryFile(path);
}