mirror of
https://gitlab.com/qemu-project/ipxe.git
synced 2025-11-03 07:59:06 +08:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| ab40ca0df7 |
808
src/crypto/x25519.c
Normal file
808
src/crypto/x25519.c
Normal file
@ -0,0 +1,808 @@
|
||||
/*
|
||||
* Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License as
|
||||
* published by the Free Software Foundation; either version 2 of the
|
||||
* License, or any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||||
* 02110-1301, USA.
|
||||
*
|
||||
* You can also choose to distribute this program under the terms of
|
||||
* the Unmodified Binary Distribution Licence (as given in the file
|
||||
* COPYING.UBDL), provided that you have satisfied its requirements.
|
||||
*/
|
||||
|
||||
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
|
||||
|
||||
/** @file
|
||||
*
|
||||
* X25519 key exchange
|
||||
*
|
||||
* This implementation is inspired by and partially based upon the
|
||||
* paper "Implementing Curve25519/X25519: A Tutorial on Elliptic Curve
|
||||
* Cryptography" by Martin Kleppmann, available for download from
|
||||
* https://www.cl.cam.ac.uk/teaching/2122/Crypto/curve25519.pdf
|
||||
*
|
||||
* The underlying modular addition, subtraction, and multiplication
|
||||
* operations are completely redesigned for substantially improved
|
||||
* efficiency compared to the TweetNaCl implementation studied in that
|
||||
* paper.
|
||||
*
|
||||
* TweetNaCl iPXE
|
||||
* --------- ----
|
||||
*
|
||||
* Storage size of each big integer 128 40
|
||||
* (in bytes)
|
||||
*
|
||||
* Stack usage for key exchange 1144 360
|
||||
* (in bytes, large objects only)
|
||||
*
|
||||
* Cost of big integer addition 16 5
|
||||
* (in number of 64-bit additions)
|
||||
*
|
||||
* Cost of big integer multiplication 273 31
|
||||
* (in number of 64-bit multiplications)
|
||||
*
|
||||
* The implementation is constant-time (provided that the underlying
|
||||
* big integer operations are also constant-time).
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <ipxe/init.h>
|
||||
#include <ipxe/x25519.h>
|
||||
|
||||
/** X25519 reduction constant
|
||||
*
|
||||
* The X25519 field prime is p=2^255-19. This gives us:
|
||||
*
|
||||
* p = 2^255 - 19
|
||||
* 2^255 = p + 19
|
||||
* 2^255 = 19 (mod p)
|
||||
* k * 2^255 = k * 19 (mod p)
|
||||
*
|
||||
* We can therefore reduce a value modulo p by taking the high-order
|
||||
* bits of the value from bit 255 and above, multiplying by 19, and
|
||||
* adding this to the low-order 255 bits of the value.
|
||||
*
|
||||
* This would be cumbersome to do in practice since it would require
|
||||
* partitioning the value at a 255-bit boundary (and hence would
|
||||
* require some shifting and masking operations). However, we can
|
||||
* note that:
|
||||
*
|
||||
* k * 2^255 = k * 19 (mod p)
|
||||
* k * 2 * 2^255 = k * 2 * 19 (mod p)
|
||||
* k * 2^256 = k * 38 (mod p)
|
||||
*
|
||||
* We can therefore simplify the reduction to taking the high order
|
||||
* bits of the value from bit 256 and above, multiplying by 38, and
|
||||
* adding this to the low-order 256 bits of the value.
|
||||
*
|
||||
* Since 256 will inevitably be a multiple of the big integer element
|
||||
* size (typically 32 or 64 bits), this avoids the need to perform any
|
||||
* shifting or masking operations.
|
||||
*/
|
||||
#define X25519_REDUCE_256 38
|
||||
|
||||
/** X25519 multiplication step 1 result
|
||||
*
|
||||
* Step 1 of X25519 multiplication is to compute the product of two
|
||||
* X25519 unsigned 258-bit integers.
|
||||
*
|
||||
* Both multiplication inputs are limited to 258 bits, and so the
|
||||
* product will have at most 516 bits.
|
||||
*/
|
||||
union x25519_multiply_step1 {
|
||||
/** Raw product
|
||||
*
|
||||
* Big integer multiplication produces a result with a number
|
||||
* of elements equal to the sum of the number of elements in
|
||||
* each input.
|
||||
*/
|
||||
bigint_t ( X25519_SIZE + X25519_SIZE ) product;
|
||||
/** Partition into low-order and high-order bits
|
||||
*
|
||||
* Reduction modulo p requires separating the low-order 256
|
||||
* bits from the remaining high-order bits.
|
||||
*
|
||||
* Since the value will never exceed 516 bits (see above),
|
||||
* there will be at most 260 high-order bits.
|
||||
*/
|
||||
struct {
|
||||
/** Low-order 256 bits */
|
||||
bigint_t ( bigint_required_size ( ( 256 /* bits */ + 7 ) / 8 ) )
|
||||
low_256bit;
|
||||
/** High-order 260 bits */
|
||||
bigint_t ( bigint_required_size ( ( 260 /* bits */ + 7 ) / 8 ) )
|
||||
high_260bit;
|
||||
} __attribute__ (( packed )) parts;
|
||||
};
|
||||
|
||||
/** X25519 multiplication step 2 result
|
||||
*
|
||||
* Step 2 of X25519 multiplication is to multiply the high-order 260
|
||||
* bits from step 1 with the 6-bit reduction constant 38, and to add
|
||||
* this to the low-order 256 bits from step 1.
|
||||
*
|
||||
* The multiplication inputs are limited to 260 and 6 bits
|
||||
* respectively, and so the product will have at most 266 bits. After
|
||||
* adding the low-order 256 bits from step 1, the result will have at
|
||||
* most 267 bits.
|
||||
*/
|
||||
union x25519_multiply_step2 {
|
||||
/** Raw product
|
||||
*
|
||||
* Big integer multiplication produces a result with a number
|
||||
* of elements equal to the sum of the number of elements in
|
||||
* each input.
|
||||
*/
|
||||
bigint_t ( bigint_required_size ( ( 260 /* bits */ + 7 ) / 8 ) +
|
||||
bigint_required_size ( ( 6 /* bits */ + 7 ) / 8 ) ) product;
|
||||
/** Big integer value
|
||||
*
|
||||
* The value will never exceed 267 bits (see above), and so
|
||||
* may be consumed as a normal X25519 big integer.
|
||||
*/
|
||||
x25519_t value;
|
||||
/** Partition into low-order and high-order bits
|
||||
*
|
||||
* Reduction modulo p requires separating the low-order 256
|
||||
* bits from the remaining high-order bits.
|
||||
*
|
||||
* Since the value will never exceed 267 bits (see above),
|
||||
* there will be at most 11 high-order bits.
|
||||
*/
|
||||
struct {
|
||||
/** Low-order 256 bits */
|
||||
bigint_t ( bigint_required_size ( ( 256 /* bits */ + 7 ) / 8 ) )
|
||||
low_256bit;
|
||||
/** High-order 11 bits */
|
||||
bigint_t ( bigint_required_size ( ( 11 /* bits */ + 7 ) / 8 ) )
|
||||
high_11bit;
|
||||
} __attribute__ (( packed )) parts;
|
||||
};
|
||||
|
||||
/** X25519 multiplication step 3 result
|
||||
*
|
||||
* Step 3 of X25519 multiplication is to multiply the high-order 11
|
||||
* bits from step 2 with the 6-bit reduction constant 38, and to add
|
||||
* this to the low-order 256 bits from step 2.
|
||||
*
|
||||
* The multiplication inputs are limited to 11 and 6 bits
|
||||
* respectively, and so the product will have at most 17 bits. After
|
||||
* adding the low-order 256 bits from step 2, the result will have at
|
||||
* most 257 bits.
|
||||
*/
|
||||
union x25519_multiply_step3 {
|
||||
/** Raw product
|
||||
*
|
||||
* Big integer multiplication produces a result with a number
|
||||
* of elements equal to the sum of the number of elements in
|
||||
* each input.
|
||||
*/
|
||||
bigint_t ( bigint_required_size ( ( 11 /* bits */ + 7 ) / 8 ) +
|
||||
bigint_required_size ( ( 6 /* bits */ + 7 ) / 8 ) ) product;
|
||||
/** Big integer value
|
||||
*
|
||||
* The value will never exceed 267 bits (see above), and so
|
||||
* may be consumed as a normal X25519 big integer.
|
||||
*/
|
||||
x25519_t value;
|
||||
};
|
||||
|
||||
/** X25519 multiplication temporary working space
|
||||
*
|
||||
* We overlap the buffers used by each step of the multiplication
|
||||
* calculation to reduce the total stack space required:
|
||||
*
|
||||
* |--------------------------------------------------------|
|
||||
* | <- pad -> | <------------ step 1 result -------------> |
|
||||
* | | <- low 256 bits -> | <-- high 260 bits --> |
|
||||
* | <------- step 2 result ------> | <-- step 3 result --> |
|
||||
* |--------------------------------------------------------|
|
||||
*/
|
||||
union x25519_multiply_workspace {
|
||||
/** Step 1 result */
|
||||
struct {
|
||||
/** Padding to avoid collision between steps 1 and 2
|
||||
*
|
||||
* The step 2 multiplication consumes the high 260
|
||||
* bits of step 1, and so the step 2 multiplication
|
||||
* result must not overlap this portion of the step 1
|
||||
* result.
|
||||
*/
|
||||
uint8_t pad[ sizeof ( union x25519_multiply_step2 ) -
|
||||
offsetof ( union x25519_multiply_step1,
|
||||
parts.high_260bit ) ];
|
||||
/** Step 1 result */
|
||||
union x25519_multiply_step1 step1;
|
||||
} __attribute__ (( packed ));
|
||||
/** Steps 2 and 3 results */
|
||||
struct {
|
||||
/** Step 2 result */
|
||||
union x25519_multiply_step2 step2;
|
||||
/** Step 3 result */
|
||||
union x25519_multiply_step3 step3;
|
||||
} __attribute__ (( packed ));
|
||||
};
|
||||
|
||||
/** An X25519 elliptic curve point in projective coordinates
|
||||
*
|
||||
* A point (x,y) on the Montgomery curve used in X25519 is represented
|
||||
* using projective coordinates (X/Z,Y/Z) so that intermediate
|
||||
* calculations may be performed on both numerator and denominator
|
||||
* separately, with the division step performed only once at the end
|
||||
* of the calculation.
|
||||
*
|
||||
* The group operation calculation is performed using a Montgomery
|
||||
* ladder as:
|
||||
*
|
||||
* X[2i] = ( X[i]^2 - Z[i]^2 )^2
|
||||
* X[2i+1] = ( X[i] * X[i+1] - Z[i] * Z[i+1] )^2
|
||||
* Z[2i] = 4 * X[i] * Z[i] * ( X[i]^2 + A * X[i] * Z[i] + Z[i]^2 )
|
||||
* Z[2i+1] = X[0] * ( X[i] * Z[i+1] - X[i+1] * Z[i] ) ^ 2
|
||||
*
|
||||
* It is therefore not necessary to store (or use) the value of Y.
|
||||
*/
|
||||
struct x25519_projective {
|
||||
/** X coordinate */
|
||||
union x25519_quad257 X;
|
||||
/** Z coordinate */
|
||||
union x25519_quad257 Z;
|
||||
};
|
||||
|
||||
/** An X25519 Montgomery ladder step */
|
||||
struct x25519_step {
|
||||
/** X[n]/Z[n] */
|
||||
struct x25519_projective x_n;
|
||||
/** X[n+1]/Z[n+1] */
|
||||
struct x25519_projective x_n1;
|
||||
};
|
||||
|
||||
/** Constant p=2^255-19 (the finite field prime) */
|
||||
static const uint8_t x25519_p_raw[] = {
|
||||
0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xed
|
||||
};
|
||||
|
||||
/** Constant p=2^255-19 (the finite field prime) */
|
||||
static x25519_t x25519_p;
|
||||
|
||||
/** Constant 2p=2^256-38 */
|
||||
static x25519_t x25519_2p;
|
||||
|
||||
/** Constant 4p=2^257-76 */
|
||||
static x25519_t x25519_4p;
|
||||
|
||||
/** Reduction constant (used during multiplication) */
|
||||
static const uint8_t x25519_reduce_256_raw[] = { X25519_REDUCE_256 };
|
||||
|
||||
/** Reduction constant (used during multiplication) */
|
||||
static bigint_t ( bigint_required_size ( sizeof ( x25519_reduce_256_raw ) ) )
|
||||
x25519_reduce_256;
|
||||
|
||||
/** Constant 121665 (used in the Montgomery ladder) */
|
||||
static const uint8_t x25519_121665_raw[] = { 0x01, 0xdb, 0x41 };
|
||||
|
||||
/** Constant 121665 (used in the Montgomery ladder) */
|
||||
static union x25519_oct258 x25519_121665;
|
||||
|
||||
/**
|
||||
* Initialise constants
|
||||
*
|
||||
*/
|
||||
static void x25519_init_constants ( void ) {
|
||||
|
||||
/* Construct constant p */
|
||||
bigint_init ( &x25519_p, x25519_p_raw, sizeof ( x25519_p_raw ) );
|
||||
|
||||
/* Construct constant 2p */
|
||||
bigint_copy ( &x25519_p, &x25519_2p );
|
||||
bigint_add ( &x25519_p, &x25519_2p );
|
||||
|
||||
/* Construct constant 4p */
|
||||
bigint_copy ( &x25519_2p, &x25519_4p );
|
||||
bigint_add ( &x25519_2p, &x25519_4p );
|
||||
|
||||
/* Construct reduction constant */
|
||||
bigint_init ( &x25519_reduce_256, x25519_reduce_256_raw,
|
||||
sizeof ( x25519_reduce_256_raw ) );
|
||||
|
||||
/* Construct constant 121665 */
|
||||
bigint_init ( &x25519_121665.value, x25519_121665_raw,
|
||||
sizeof ( x25519_121665_raw ) );
|
||||
}
|
||||
|
||||
/** Initialisation function */
|
||||
struct init_fn x25519_init_fn __init_fn ( INIT_NORMAL ) = {
|
||||
.initialise = x25519_init_constants,
|
||||
};
|
||||
|
||||
/**
|
||||
* Add big integers modulo field prime
|
||||
*
|
||||
* @v augend Big integer to add
|
||||
* @v addend Big integer to add
|
||||
* @v result Big integer to hold result (may overlap augend)
|
||||
*/
|
||||
static inline __attribute__ (( always_inline )) void
|
||||
x25519_add ( const union x25519_quad257 *augend,
|
||||
const union x25519_quad257 *addend,
|
||||
union x25519_oct258 *result ) {
|
||||
int copy;
|
||||
|
||||
/* Copy augend if necessary */
|
||||
copy = ( result != &augend->oct258 );
|
||||
build_assert ( __builtin_constant_p ( copy ) );
|
||||
if ( copy ) {
|
||||
build_assert ( result != &addend->oct258 );
|
||||
bigint_copy ( &augend->oct258.value, &result->value );
|
||||
}
|
||||
|
||||
/* Perform addition
|
||||
*
|
||||
* Both inputs are in the range [0,4p-1] and the resulting
|
||||
* sum is therefore in the range [0,8p-2].
|
||||
*
|
||||
* This range lies within the range [0,8p-1] and the result is
|
||||
* therefore a valid X25519 unsigned 258-bit integer, as
|
||||
* required.
|
||||
*/
|
||||
bigint_add ( &addend->value, &result->value );
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtract big integers modulo field prime
|
||||
*
|
||||
* @v minuend Big integer from which to subtract
|
||||
* @v subtrahend Big integer to subtract
|
||||
* @v result Big integer to hold result (may overlap minuend)
|
||||
*/
|
||||
static inline __attribute__ (( always_inline )) void
|
||||
x25519_subtract ( const union x25519_quad257 *minuend,
|
||||
const union x25519_quad257 *subtrahend,
|
||||
union x25519_oct258 *result ) {
|
||||
int copy;
|
||||
|
||||
/* Copy minuend if necessary */
|
||||
copy = ( result != &minuend->oct258 );
|
||||
build_assert ( __builtin_constant_p ( copy ) );
|
||||
if ( copy ) {
|
||||
build_assert ( result != &subtrahend->oct258 );
|
||||
bigint_copy ( &minuend->oct258.value, &result->value );
|
||||
}
|
||||
|
||||
/* Perform subtraction
|
||||
*
|
||||
* Both inputs are in the range [0,4p-1] and the resulting
|
||||
* difference is therefore in the range [1-4p,4p-1].
|
||||
*
|
||||
* This range lies partially outside the range [0,8p-1] and
|
||||
* the result is therefore not yet a valid X25519 unsigned
|
||||
* 258-bit integer.
|
||||
*/
|
||||
bigint_subtract ( &subtrahend->value, &result->value );
|
||||
|
||||
/* Add constant multiple of field prime p
|
||||
*
|
||||
* Add the constant 4p to the result. This brings the result
|
||||
* within the range [1,8p-1] (without changing the value
|
||||
* modulo p).
|
||||
*
|
||||
* This range lies within the range [0,8p-1] and the result is
|
||||
* therefore now a valid X25519 unsigned 258-bit integer, as
|
||||
* required.
|
||||
*/
|
||||
bigint_add ( &x25519_4p, &result->value );
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply big integers modulo field prime
|
||||
*
|
||||
* @v multiplicand Big integer to be multiplied
|
||||
* @v multiplier Big integer to be multiplied
|
||||
* @v result Big integer to hold result (may overlap either input)
|
||||
*/
|
||||
void x25519_multiply ( const union x25519_oct258 *multiplicand,
|
||||
const union x25519_oct258 *multiplier,
|
||||
union x25519_quad257 *result ) {
|
||||
union x25519_multiply_workspace tmp;
|
||||
union x25519_multiply_step1 *step1 = &tmp.step1;
|
||||
union x25519_multiply_step2 *step2 = &tmp.step2;
|
||||
union x25519_multiply_step3 *step3 = &tmp.step3;
|
||||
|
||||
/* Step 1: perform raw multiplication
|
||||
*
|
||||
* step1 = multiplicand * multiplier
|
||||
*
|
||||
* Both inputs are 258-bit numbers and the step 1 result is
|
||||
* therefore 258+258=516 bits.
|
||||
*/
|
||||
static_assert ( sizeof ( step1->product ) >= sizeof ( step1->parts ) );
|
||||
bigint_multiply ( &multiplicand->value, &multiplier->value,
|
||||
&step1->product );
|
||||
|
||||
/* Step 2: reduce high-order 516-256=260 bits of step 1 result
|
||||
*
|
||||
* Use the identity 2^256=38 (mod p) to reduce the high-order
|
||||
* bits of the step 1 result. We split the 516-bit result
|
||||
* from step 1 into its low-order 256 bits and high-order 260
|
||||
* bits:
|
||||
*
|
||||
* step1 = step1(low 256 bits) + step1(high 260 bits) * 2^256
|
||||
*
|
||||
* and then perform the calculation:
|
||||
*
|
||||
* step2 = step1 (mod p)
|
||||
* = step1(low 256 bits) + step1(high 260 bits) * 2^256 (mod p)
|
||||
* = step1(low 256 bits) + step1(high 260 bits) * 38 (mod p)
|
||||
*
|
||||
* There are 6 bits in the constant value 38. The step 2
|
||||
* multiplication product will therefore have 260+6=266 bits,
|
||||
* and the step 2 result (after the addition) will therefore
|
||||
* have 267 bits.
|
||||
*/
|
||||
static_assert ( sizeof ( step2->product ) >= sizeof ( step2->value ) );
|
||||
static_assert ( sizeof ( step2->product ) >= sizeof ( step2->parts ) );
|
||||
bigint_grow ( &step1->parts.low_256bit, &result->value );
|
||||
bigint_multiply ( &step1->parts.high_260bit, &x25519_reduce_256,
|
||||
&step2->product );
|
||||
bigint_add ( &result->value, &step2->value );
|
||||
|
||||
/* Step 3: reduce high-order 267-256=11 bits of step 2 result
|
||||
*
|
||||
* Use the identity 2^256=38 (mod p) again to reduce the
|
||||
* high-order bits of the step 2 result. As before, we split
|
||||
* the 267-bit result from step 2 into its low-order 256 bits
|
||||
* and high-order 11 bits:
|
||||
*
|
||||
* step2 = step2(low 256 bits) + step2(high 11 bits) * 2^256
|
||||
*
|
||||
* and then perform the calculation:
|
||||
*
|
||||
* step3 = step2 (mod p)
|
||||
* = step2(low 256 bits) + step2(high 11 bits) * 2^256 (mod p)
|
||||
* = step2(low 256 bits) + step2(high 11 bits) * 38 (mod p)
|
||||
*
|
||||
* There are 6 bits in the constant value 38. The step 3
|
||||
* multiplication product will therefore have 11+6=19 bits,
|
||||
* and the step 3 result (after the addition) will therefore
|
||||
* have 257 bits.
|
||||
*
|
||||
* A loose upper bound for the step 3 result (after the
|
||||
* addition) is given by:
|
||||
*
|
||||
* step3 < ( 2^256 - 1 ) + ( 2^19 - 1 )
|
||||
* < ( 2^257 - 2^256 - 1 ) + ( 2^19 - 1 )
|
||||
* < ( 2^257 - 76 ) - 2^256 + 2^19 + 74
|
||||
* < 4 * ( 2^255 - 19 ) - 2^256 + 2^19 + 74
|
||||
* < 4p - 2^256 + 2^19 + 74
|
||||
*
|
||||
* and so the step 3 result is strictly less than 4p, and
|
||||
* therefore lies within the range [0,4p-1].
|
||||
*/
|
||||
memset ( &step3->value, 0, sizeof ( step3->value ) );
|
||||
bigint_grow ( &step2->parts.low_256bit, &result->value );
|
||||
bigint_multiply ( &step2->parts.high_11bit, &x25519_reduce_256,
|
||||
&step3->product );
|
||||
bigint_add ( &step3->value, &result->value );
|
||||
|
||||
/* Step 1 calculates the product of the input operands, and
|
||||
* each subsequent step reduces the number of bits in the
|
||||
* result while preserving this value (modulo p). The final
|
||||
* result is therefore equal to the product of the input
|
||||
* operands (modulo p), as required.
|
||||
*
|
||||
* The step 3 result lies within the range [0,4p-1] and the
|
||||
* final result is therefore a valid X25519 unsigned 257-bit
|
||||
* integer, as required.
|
||||
*/
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute multiplicative inverse
|
||||
*
|
||||
* @v invertend Big integer to be inverted
|
||||
* @v result Big integer to hold result (may not overlap input)
|
||||
*/
|
||||
void x25519_invert ( const union x25519_oct258 *invertend,
|
||||
union x25519_quad257 *result ) {
|
||||
int i;
|
||||
|
||||
/* Sanity check */
|
||||
assert ( invertend != &result->oct258 );
|
||||
|
||||
/* Calculate inverse as x^(-1)=x^(p-2) where p is the field prime
|
||||
*
|
||||
* The field prime is p=2^255-19 and so:
|
||||
*
|
||||
* p - 2 = 2^255 - 21
|
||||
* = (2^255 - 1) - 2^4 - 2^2
|
||||
*
|
||||
* i.e. p-2 is a 254-bit number in which all bits are set
|
||||
* apart from bit 2 and bit 4.
|
||||
*
|
||||
* We use the square-and-multiply method to compute x^(p-2).
|
||||
*/
|
||||
bigint_copy ( &invertend->value, &result->value );
|
||||
for ( i = 253 ; i >= 0 ; i-- ) {
|
||||
|
||||
/* Square running total */
|
||||
x25519_multiply ( &result->oct258, &result->oct258, result );
|
||||
|
||||
/* For each set bit in the exponent, multiply by invertend */
|
||||
if ( ( i != 2 ) && ( i != 4 ) ) {
|
||||
x25519_multiply ( invertend, &result->oct258, result );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Reduce big integer via conditional subtraction
|
||||
*
|
||||
* @v subtrahend Big integer to subtract
|
||||
* @v value Big integer to be subtracted from, if possible
|
||||
*/
|
||||
static void x25519_reduce_by ( const x25519_t *subtrahend, x25519_t *value ) {
|
||||
unsigned int max_bit = ( ( 8 * sizeof ( *value ) ) - 1 );
|
||||
x25519_t tmp;
|
||||
|
||||
/* Conditionally subtract subtrahend
|
||||
*
|
||||
* Subtract the subtrahend, discarding the result (in constant
|
||||
* time) if the subtraction underflows.
|
||||
*/
|
||||
bigint_copy ( value, &tmp );
|
||||
bigint_subtract ( subtrahend, value );
|
||||
bigint_swap ( value, &tmp, bigint_bit_is_set ( value, max_bit ) );
|
||||
}
|
||||
|
||||
/**
|
||||
* Reduce big integer to canonical range
|
||||
*
|
||||
* @v value Big integer to be reduced
|
||||
*/
|
||||
void x25519_reduce ( union x25519_quad257 *value ) {
|
||||
|
||||
/* Conditionally subtract 2p
|
||||
*
|
||||
* Subtract twice the field prime, discarding the result (in
|
||||
* constant time) if the subtraction underflows.
|
||||
*
|
||||
* The input value is in the range [0,4p-1]. After this
|
||||
* conditional subtraction, the value is in the range
|
||||
* [0,2p-1].
|
||||
*/
|
||||
x25519_reduce_by ( &x25519_2p, &value->value );
|
||||
|
||||
/* Conditionally subtract p
|
||||
*
|
||||
* Subtract the field prime, discarding the result (in
|
||||
* constant time) if the subtraction underflows.
|
||||
*
|
||||
* The value is already in the range [0,2p-1]. After this
|
||||
* conditional subtraction, the value is in the range [0,p-1]
|
||||
* and is therefore the canonical representation.
|
||||
*/
|
||||
x25519_reduce_by ( &x25519_p, &value->value );
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute next step of the Montgomery ladder
|
||||
*
|
||||
* @v base Base point
|
||||
* @v bit Bit value
|
||||
* @v step Ladder step
|
||||
*/
|
||||
static void x25519_step ( const union x25519_quad257 *base, int bit,
|
||||
struct x25519_step *step ) {
|
||||
union x25519_quad257 *a = &step->x_n.X;
|
||||
union x25519_quad257 *b = &step->x_n1.X;
|
||||
union x25519_quad257 *c = &step->x_n.Z;
|
||||
union x25519_quad257 *d = &step->x_n1.Z;
|
||||
union x25519_oct258 e;
|
||||
union x25519_quad257 f;
|
||||
union x25519_oct258 *v1_e;
|
||||
union x25519_oct258 *v2_a;
|
||||
union x25519_oct258 *v3_c;
|
||||
union x25519_oct258 *v4_b;
|
||||
union x25519_quad257 *v5_d;
|
||||
union x25519_quad257 *v6_f;
|
||||
union x25519_quad257 *v7_a;
|
||||
union x25519_quad257 *v8_c;
|
||||
union x25519_oct258 *v9_e;
|
||||
union x25519_oct258 *v10_a;
|
||||
union x25519_quad257 *v11_b;
|
||||
union x25519_oct258 *v12_c;
|
||||
union x25519_quad257 *v13_a;
|
||||
union x25519_oct258 *v14_a;
|
||||
union x25519_quad257 *v15_c;
|
||||
union x25519_quad257 *v16_a;
|
||||
union x25519_quad257 *v17_d;
|
||||
union x25519_quad257 *v18_b;
|
||||
|
||||
/* See the referenced paper "Implementing Curve25519/X25519: A
|
||||
* Tutorial on Elliptic Curve Cryptography" for the reasoning
|
||||
* behind this calculation.
|
||||
*/
|
||||
|
||||
/* Reuse storage locations for intermediate results where possible */
|
||||
v1_e = &e;
|
||||
v2_a = container_of ( &a->value, union x25519_oct258, value );
|
||||
v3_c = container_of ( &c->value, union x25519_oct258, value );
|
||||
v4_b = container_of ( &b->value, union x25519_oct258, value );
|
||||
v5_d = d;
|
||||
v6_f = &f;
|
||||
v7_a = a;
|
||||
v8_c = c;
|
||||
v9_e = &e;
|
||||
v10_a = container_of ( &a->value, union x25519_oct258, value );
|
||||
v11_b = b;
|
||||
v12_c = container_of ( &c->value, union x25519_oct258, value );
|
||||
v13_a = a;
|
||||
v14_a = container_of ( &a->value, union x25519_oct258, value );
|
||||
v15_c = c;
|
||||
v16_a = a;
|
||||
v17_d = d;
|
||||
v18_b = b;
|
||||
|
||||
/* Select inputs */
|
||||
bigint_swap ( &a->value, &b->value, bit );
|
||||
bigint_swap ( &c->value, &d->value, bit );
|
||||
|
||||
/* v1 = a + c */
|
||||
x25519_add ( a, c, v1_e );
|
||||
|
||||
/* v2 = a - c */
|
||||
x25519_subtract ( a, c, v2_a );
|
||||
|
||||
/* v3 = b + d */
|
||||
x25519_add ( b, d, v3_c );
|
||||
|
||||
/* v4 = b - d */
|
||||
x25519_subtract ( b, d, v4_b );
|
||||
|
||||
/* v5 = v1^2 = (a + c)^2 = a^2 + 2ac + c^2 */
|
||||
x25519_multiply ( v1_e, v1_e, v5_d );
|
||||
|
||||
/* v6 = v2^2 = (a - c)^2 = a^2 - 2ac + c^2 */
|
||||
x25519_multiply ( v2_a, v2_a, v6_f );
|
||||
|
||||
/* v7 = v3 * v2 = (b + d) * (a - c) = ab - bc + ad - cd */
|
||||
x25519_multiply ( v3_c, v2_a, v7_a );
|
||||
|
||||
/* v8 = v4 * v1 = (b - d) * (a + c) = ab + bc - ad - cd */
|
||||
x25519_multiply ( v4_b, v1_e, v8_c );
|
||||
|
||||
/* v9 = v7 + v8 = 2 * (ab - cd) */
|
||||
x25519_add ( v7_a, v8_c, v9_e );
|
||||
|
||||
/* v10 = v7 - v8 = 2 * (ad - bc) */
|
||||
x25519_subtract ( v7_a, v8_c, v10_a );
|
||||
|
||||
/* v11 = v10^2 = 4 * (ad - bc)^2 */
|
||||
x25519_multiply ( v10_a, v10_a, v11_b );
|
||||
|
||||
/* v12 = v5 - v6 = (a + c)^2 - (a - c)^2 = 4ac */
|
||||
x25519_subtract ( v5_d, v6_f, v12_c );
|
||||
|
||||
/* v13 = v12 * 121665 = 486660ac = (A-2) * ac */
|
||||
x25519_multiply ( v12_c, &x25519_121665, v13_a );
|
||||
|
||||
/* v14 = v13 + v5 = (A-2) * ac + a^2 + 2ac + c^2 = a^2 + A * ac + c^2 */
|
||||
x25519_add ( v13_a, v5_d, v14_a );
|
||||
|
||||
/* v15 = v12 * v14 = 4ac * (a^2 + A * ac + c^2) */
|
||||
x25519_multiply ( v12_c, v14_a, v15_c );
|
||||
|
||||
/* v16 = v5 * v6 = (a + c)^2 * (a - c)^2 = (a^2 - c^2)^2 */
|
||||
x25519_multiply ( &v5_d->oct258, &v6_f->oct258, v16_a );
|
||||
|
||||
/* v17 = v11 * base = 4 * base * (ad - bc)^2 */
|
||||
x25519_multiply ( &v11_b->oct258, &base->oct258, v17_d );
|
||||
|
||||
/* v18 = v9^2 = 4 * (ab - cd)^2 */
|
||||
x25519_multiply ( v9_e, v9_e, v18_b );
|
||||
|
||||
/* Select outputs */
|
||||
bigint_swap ( &a->value, &b->value, bit );
|
||||
bigint_swap ( &c->value, &d->value, bit );
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply X25519 elliptic curve point
|
||||
*
|
||||
* @v base Base point
|
||||
* @v scalar Scalar multiple
|
||||
* @v result Point to hold result (may overlap base point)
|
||||
*/
|
||||
static void x25519_ladder ( const union x25519_quad257 *base,
|
||||
struct x25519_value *scalar,
|
||||
union x25519_quad257 *result ) {
|
||||
static const uint8_t zero[] = { 0 };
|
||||
static const uint8_t one[] = { 1 };
|
||||
struct x25519_step step;
|
||||
union x25519_quad257 *tmp;
|
||||
int bit;
|
||||
int i;
|
||||
|
||||
/* Initialise ladder */
|
||||
bigint_init ( &step.x_n.X.value, one, sizeof ( one ) );
|
||||
bigint_init ( &step.x_n.Z.value, zero, sizeof ( zero ) );
|
||||
bigint_copy ( &base->value, &step.x_n1.X.value );
|
||||
bigint_init ( &step.x_n1.Z.value, one, sizeof ( one ) );
|
||||
|
||||
/* Use ladder */
|
||||
for ( i = 254 ; i >= 0 ; i-- ) {
|
||||
bit = ( ( scalar->raw[ i / 8 ] >> ( i % 8 ) ) & 1 );
|
||||
x25519_step ( base, bit, &step );
|
||||
}
|
||||
|
||||
/* Convert back to affine coordinate */
|
||||
tmp = &step.x_n1.X;
|
||||
x25519_invert ( &step.x_n.Z.oct258, tmp );
|
||||
x25519_multiply ( &step.x_n.X.oct258, &tmp->oct258, result );
|
||||
x25519_reduce ( result );
|
||||
}
|
||||
|
||||
/**
|
||||
* Reverse X25519 value endianness
|
||||
*
|
||||
* @v value Value to reverse
|
||||
*/
|
||||
static void x25519_reverse ( struct x25519_value *value ) {
|
||||
uint8_t *low = value->raw;
|
||||
uint8_t *high = &value->raw[ sizeof ( value->raw ) - 1 ];
|
||||
uint8_t tmp;
|
||||
|
||||
/* Reverse bytes */
|
||||
do {
|
||||
tmp = *low;
|
||||
*low = *high;
|
||||
*high = tmp;
|
||||
} while ( ++low < --high );
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate X25519 key
|
||||
*
|
||||
* @v base Base point
|
||||
* @v scalar Scalar multiple
|
||||
* @v result Point to hold result (may overlap base point)
|
||||
*/
|
||||
void x25519_key ( const struct x25519_value *base,
|
||||
const struct x25519_value *scalar,
|
||||
struct x25519_value *result ) {
|
||||
struct x25519_value *tmp = result;
|
||||
union x25519_quad257 point;
|
||||
|
||||
/* Reverse base point and clear high bit as required by RFC7748 */
|
||||
memcpy ( tmp, base, sizeof ( *tmp ) );
|
||||
x25519_reverse ( tmp );
|
||||
tmp->raw[0] &= 0x7f;
|
||||
bigint_init ( &point.value, tmp->raw, sizeof ( tmp->raw ) );
|
||||
|
||||
/* Clamp scalar as required by RFC7748 */
|
||||
memcpy ( tmp, scalar, sizeof ( *tmp ) );
|
||||
tmp->raw[0] &= 0xf8;
|
||||
tmp->raw[31] |= 0x40;
|
||||
|
||||
/* Multiply elliptic curve point */
|
||||
x25519_ladder ( &point, tmp, &point );
|
||||
|
||||
/* Reverse result */
|
||||
bigint_done ( &point.value, result->raw, sizeof ( result->raw ) );
|
||||
x25519_reverse ( result );
|
||||
}
|
||||
91
src/include/ipxe/x25519.h
Normal file
91
src/include/ipxe/x25519.h
Normal file
@ -0,0 +1,91 @@
|
||||
#ifndef _IPXE_X25519_H
|
||||
#define _IPXE_X25519_H
|
||||
|
||||
/** @file
|
||||
*
|
||||
* X25519 key exchange
|
||||
*
|
||||
*/
|
||||
|
||||
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
|
||||
|
||||
#include <stdint.h>
|
||||
#include <ipxe/bigint.h>
|
||||
|
||||
/** X25519 unsigned big integer size
|
||||
*
|
||||
* X25519 uses the finite field of integers modulo the prime
|
||||
* p=2^255-19. The canonical representations of integers in this
|
||||
* field therefore require only 255 bits.
|
||||
*
|
||||
* For internal calculations we use big integers containing up to 267
|
||||
* bits, since this ends up allowing us to avoid some unnecessary (and
|
||||
* expensive) intermediate reductions modulo p.
|
||||
*/
|
||||
#define X25519_SIZE bigint_required_size ( ( 267 /* bits */ + 7 ) / 8 )
|
||||
|
||||
/** An X25519 unsigned big integer used in internal calculations */
|
||||
typedef bigint_t ( X25519_SIZE ) x25519_t;
|
||||
|
||||
/** An X25519 unsigned 258-bit integer
|
||||
*
|
||||
* This is an unsigned integer N in the finite field of integers
|
||||
* modulo the prime p=2^255-19.
|
||||
*
|
||||
* In this representation, N is encoded as any big integer that is in
|
||||
* the same congruence class as N (i.e that has the same value as N
|
||||
* modulo p) and that lies within the 258-bit range [0,8p-1].
|
||||
*
|
||||
* This type can be used as an input for multiplication (but not for
|
||||
* addition or subtraction).
|
||||
*
|
||||
* Addition or subtraction will produce an output of this type.
|
||||
*/
|
||||
union x25519_oct258 {
|
||||
/** Big integer value */
|
||||
x25519_t value;
|
||||
};
|
||||
|
||||
/** An X25519 unsigned 257-bit integer
|
||||
*
|
||||
* This is an unsigned integer N in the finite field of integers
|
||||
* modulo the prime p=2^255-19.
|
||||
*
|
||||
* In this representation, N is encoded as any big integer that is in
|
||||
* the same congruence class as N (i.e that has the same value as N
|
||||
* modulo p) and that lies within the 257-bit range [0,4p-1].
|
||||
*
|
||||
* This type can be used as an input for addition, subtraction, or
|
||||
* multiplication.
|
||||
*
|
||||
* Multiplication will produce an output of this type.
|
||||
*/
|
||||
union x25519_quad257 {
|
||||
/** Big integer value */
|
||||
x25519_t value;
|
||||
/** X25519 unsigned 258-bit integer
|
||||
*
|
||||
* Any value in the range [0,4p-1] is automatically also
|
||||
* within the range [0,8p-1] and so may be consumed as an
|
||||
* unsigned 258-bit integer.
|
||||
*/
|
||||
const union x25519_oct258 oct258;
|
||||
};
|
||||
|
||||
/** An X25519 32-byte value */
|
||||
struct x25519_value {
|
||||
/** Raw value */
|
||||
uint8_t raw[32];
|
||||
};
|
||||
|
||||
extern void x25519_multiply ( const union x25519_oct258 *multiplicand,
|
||||
const union x25519_oct258 *multiplier,
|
||||
union x25519_quad257 *result );
|
||||
extern void x25519_invert ( const union x25519_oct258 *invertend,
|
||||
union x25519_quad257 *result );
|
||||
extern void x25519_reduce ( union x25519_quad257 *value );
|
||||
extern void x25519_key ( const struct x25519_value *base,
|
||||
const struct x25519_value *scalar,
|
||||
struct x25519_value *result );
|
||||
|
||||
#endif /* _IPXE_X25519_H */
|
||||
@ -81,3 +81,4 @@ REQUIRE_OBJECT ( hmac_test );
|
||||
REQUIRE_OBJECT ( dhe_test );
|
||||
REQUIRE_OBJECT ( gcm_test );
|
||||
REQUIRE_OBJECT ( nap_test );
|
||||
REQUIRE_OBJECT ( x25519_test );
|
||||
|
||||
570
src/tests/x25519_test.c
Normal file
570
src/tests/x25519_test.c
Normal file
@ -0,0 +1,570 @@
|
||||
/*
|
||||
* Copyright (C) 2024 Michael Brown <mbrown@fensystems.co.uk>.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License as
|
||||
* published by the Free Software Foundation; either version 2 of the
|
||||
* License, or any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||||
* 02110-1301, USA.
|
||||
*
|
||||
* You can also choose to distribute this program under the terms of
|
||||
* the Unmodified Binary Distribution Licence (as given in the file
|
||||
* COPYING.UBDL), provided that you have satisfied its requirements.
|
||||
*/
|
||||
|
||||
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
|
||||
|
||||
/** @file
|
||||
*
|
||||
* X25519 key exchange test
|
||||
*
|
||||
* Full key exchange test vectors are taken from RFC 7748.
|
||||
*/
|
||||
|
||||
/* Forcibly enable assertions */
|
||||
#undef NDEBUG
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <ipxe/x25519.h>
|
||||
#include <ipxe/test.h>
|
||||
|
||||
/** Define inline multiplicand */
|
||||
#define MULTIPLICAND(...) { __VA_ARGS__ }
|
||||
|
||||
/** Define inline multiplier */
|
||||
#define MULTIPLIER(...) { __VA_ARGS__ }
|
||||
|
||||
/** Define inline invertend */
|
||||
#define INVERTEND(...) { __VA_ARGS__ }
|
||||
|
||||
/** Define inline base point */
|
||||
#define BASE(...) { __VA_ARGS__ }
|
||||
|
||||
/** Define inline scalar multiple */
|
||||
#define SCALAR(...) { __VA_ARGS__ }
|
||||
|
||||
/** Define inline expected result */
|
||||
#define EXPECTED(...) { __VA_ARGS__ }
|
||||
|
||||
/** An X25519 multiplication self-test */
|
||||
struct x25519_multiply_test {
|
||||
/** Multiplicand */
|
||||
const void *multiplicand;
|
||||
/** Length of multiplicand */
|
||||
size_t multiplicand_len;
|
||||
/** Multiplier */
|
||||
const void *multiplier;
|
||||
/** Length of multiplier */
|
||||
size_t multiplier_len;
|
||||
/** Expected result */
|
||||
const void *expected;
|
||||
/** Length of expected result */
|
||||
size_t expected_len;
|
||||
};
|
||||
|
||||
/**
|
||||
* Define an X25519 multiplication test
|
||||
*
|
||||
* @v name Test name
|
||||
* @v MULTIPLICAND 258-bit multiplicand
|
||||
* @v MULTIPLIER 258-bit multiplier
|
||||
* @v EXPECTED 255-bit expected result
|
||||
* @ret test X25519 multiplication test
|
||||
*/
|
||||
#define X25519_MULTIPLY_TEST( name, MULTIPLICAND, MULTIPLIER, \
|
||||
EXPECTED ) \
|
||||
static const uint8_t name ## _multiplicand[] = MULTIPLICAND; \
|
||||
static const uint8_t name ## _multiplier[] = MULTIPLIER; \
|
||||
static const uint8_t name ## _expected[] = EXPECTED; \
|
||||
static struct x25519_multiply_test name = { \
|
||||
.multiplicand = name ## _multiplicand, \
|
||||
.multiplicand_len = sizeof ( name ## _multiplicand ), \
|
||||
.multiplier = name ## _multiplier, \
|
||||
.multiplier_len = sizeof ( name ## _multiplier ), \
|
||||
.expected = name ## _expected, \
|
||||
.expected_len = sizeof ( name ## _expected ), \
|
||||
}
|
||||
|
||||
/** An X25519 multiplicative inversion self-test */
|
||||
struct x25519_invert_test {
|
||||
/** Invertend */
|
||||
const void *invertend;
|
||||
/** Length of invertend */
|
||||
size_t invertend_len;
|
||||
/** Expected result */
|
||||
const void *expected;
|
||||
/** Length of expected result */
|
||||
size_t expected_len;
|
||||
};
|
||||
|
||||
/**
|
||||
* Define an X25519 multiplicative inversion test
|
||||
*
|
||||
* @v name Test name
|
||||
* @v INVERTEND 258-bit invertend
|
||||
* @v EXPECTED 255-bit expected result
|
||||
* @ret test X25519 multiplicative inversion test
|
||||
*/
|
||||
#define X25519_INVERT_TEST( name, INVERTEND, EXPECTED ) \
|
||||
static const uint8_t name ## _invertend[] = INVERTEND; \
|
||||
static const uint8_t name ## _expected[] = EXPECTED; \
|
||||
static struct x25519_invert_test name = { \
|
||||
.invertend = name ## _invertend, \
|
||||
.invertend_len = sizeof ( name ## _invertend ), \
|
||||
.expected = name ## _expected, \
|
||||
.expected_len = sizeof ( name ## _expected ), \
|
||||
}
|
||||
|
||||
/** An X25519 key exchange self-test */
|
||||
struct x25519_key_test {
|
||||
/** Base */
|
||||
struct x25519_value base;
|
||||
/** Scalar */
|
||||
struct x25519_value scalar;
|
||||
/** Expected result */
|
||||
struct x25519_value expected;
|
||||
/** Number of iterations */
|
||||
unsigned int count;
|
||||
};
|
||||
|
||||
/**
|
||||
* Define an X25519 key exchange test
|
||||
*
|
||||
* @v name Test name
|
||||
* @v COUNT Number of iterations
|
||||
* @v BASE Base point
|
||||
* @v SCALAR Scalar multiple
|
||||
* @v EXPECTED Expected result
|
||||
* @ret test X25519 key exchange test
|
||||
*/
|
||||
#define X25519_KEY_TEST( name, COUNT, BASE, SCALAR, EXPECTED ) \
|
||||
static struct x25519_key_test name = { \
|
||||
.count = COUNT, \
|
||||
.base = { .raw = BASE }, \
|
||||
.scalar = { .raw = SCALAR }, \
|
||||
.expected = { .raw = EXPECTED }, \
|
||||
}
|
||||
|
||||
/**
|
||||
* Report an X25519 multiplication test result
|
||||
*
|
||||
* @v test X25519 multiplication test
|
||||
* @v file Test code file
|
||||
* @v line Test code line
|
||||
*/
|
||||
static void x25519_multiply_okx ( struct x25519_multiply_test *test,
|
||||
const char *file, unsigned int line ) {
|
||||
union x25519_oct258 multiplicand;
|
||||
union x25519_oct258 multiplier;
|
||||
union x25519_quad257 expected;
|
||||
union x25519_quad257 actual;
|
||||
|
||||
/* Construct big integers */
|
||||
bigint_init ( &multiplicand.value, test->multiplicand,
|
||||
test->multiplicand_len );
|
||||
DBGC ( test, "X25519 multiplicand:\n" );
|
||||
DBGC_HDA ( test, 0, &multiplicand, sizeof ( multiplicand ) );
|
||||
bigint_init ( &multiplier.value, test->multiplier,
|
||||
test->multiplier_len );
|
||||
DBGC ( test, "X25519 multiplier:\n" );
|
||||
DBGC_HDA ( test, 0, &multiplier, sizeof ( multiplier ) );
|
||||
bigint_init ( &expected.value, test->expected, test->expected_len );
|
||||
DBGC ( test, "X25519 expected product:\n" );
|
||||
DBGC_HDA ( test, 0, &expected, sizeof ( expected ) );
|
||||
|
||||
/* Perform multiplication */
|
||||
x25519_multiply ( &multiplicand, &multiplier, &actual );
|
||||
|
||||
/* Reduce result to allow for comparison */
|
||||
x25519_reduce ( &actual );
|
||||
DBGC ( test, "X25519 actual product:\n" );
|
||||
DBGC_HDA ( test, 0, &actual, sizeof ( actual ) );
|
||||
|
||||
/* Compare against expected result */
|
||||
okx ( memcmp ( &actual, &expected, sizeof ( expected ) ) == 0,
|
||||
file, line );
|
||||
}
|
||||
#define x25519_multiply_ok( test ) \
|
||||
x25519_multiply_okx ( test, __FILE__, __LINE__ )
|
||||
|
||||
/**
|
||||
* Report an X25519 multiplicative inversion test result
|
||||
*
|
||||
* @v test X25519 multiplicative inversion test
|
||||
* @v file Test code file
|
||||
* @v line Test code line
|
||||
*/
|
||||
static void x25519_invert_okx ( struct x25519_invert_test *test,
|
||||
const char *file, unsigned int line ) {
|
||||
static const uint8_t one[] = { 1 };
|
||||
union x25519_oct258 invertend;
|
||||
union x25519_quad257 expected;
|
||||
union x25519_quad257 actual;
|
||||
union x25519_quad257 product;
|
||||
union x25519_quad257 identity;
|
||||
|
||||
/* Construct big integers */
|
||||
bigint_init ( &invertend.value, test->invertend, test->invertend_len );
|
||||
DBGC ( test, "X25519 invertend:\n" );
|
||||
DBGC_HDA ( test, 0, &invertend, sizeof ( invertend ) );
|
||||
bigint_init ( &expected.value, test->expected, test->expected_len );
|
||||
DBGC ( test, "X25519 expected inverse:\n" );
|
||||
DBGC_HDA ( test, 0, &expected, sizeof ( expected ) );
|
||||
bigint_init ( &identity.value, one, sizeof ( one ) );
|
||||
|
||||
/* Perform inversion */
|
||||
x25519_invert ( &invertend, &actual );
|
||||
|
||||
/* Multiply invertend by inverse */
|
||||
x25519_multiply ( &invertend, &actual.oct258, &product );
|
||||
|
||||
/* Reduce results to allow for comparison */
|
||||
x25519_reduce ( &actual );
|
||||
DBGC ( test, "X25519 actual inverse:\n" );
|
||||
DBGC_HDA ( test, 0, &actual, sizeof ( actual ) );
|
||||
x25519_reduce ( &product );
|
||||
DBGC ( test, "X25519 actual product:\n" );
|
||||
DBGC_HDA ( test, 0, &product, sizeof ( product ) );
|
||||
|
||||
/* Compare against expected results */
|
||||
okx ( memcmp ( &actual, &expected, sizeof ( expected ) ) == 0,
|
||||
file, line );
|
||||
okx ( memcmp ( &product, &identity, sizeof ( identity ) ) == 0,
|
||||
file, line );
|
||||
}
|
||||
#define x25519_invert_ok( test ) \
|
||||
x25519_invert_okx ( test, __FILE__, __LINE__ )
|
||||
|
||||
/**
|
||||
* Report an X25519 key exchange test result
|
||||
*
|
||||
* @v test X25519 key exchange test
|
||||
* @v file Test code file
|
||||
* @v line Test code line
|
||||
*/
|
||||
static void x25519_key_okx ( struct x25519_key_test *test,
|
||||
const char *file, unsigned int line ) {
|
||||
struct x25519_value base;
|
||||
struct x25519_value scalar;
|
||||
struct x25519_value actual;
|
||||
unsigned int i;
|
||||
|
||||
/* Construct input values */
|
||||
memcpy ( &base, &test->base, sizeof ( test->base ) );
|
||||
memcpy ( &scalar, &test->scalar, sizeof ( test->scalar ) );
|
||||
DBGC ( test, "X25519 base:\n" );
|
||||
DBGC_HDA ( test, 0, &base, sizeof ( base ) );
|
||||
DBGC ( test, "X25519 scalar:\n" );
|
||||
DBGC_HDA ( test, 0, &scalar, sizeof ( scalar ) );
|
||||
DBGC ( test, "X25519 expected result (x%d):\n", test->count );
|
||||
DBGC_HDA ( test, 0, &test->expected, sizeof ( test->expected ) );
|
||||
|
||||
/* Calculate key */
|
||||
for ( i = 0 ; i < test->count ; i++ ) {
|
||||
x25519_key ( &base, &scalar, &actual );
|
||||
memcpy ( &base, &scalar, sizeof ( base ) );
|
||||
memcpy ( &scalar, &actual, sizeof ( scalar ) );
|
||||
}
|
||||
DBGC ( test, "X25519 actual result (x%d):\n", test->count );
|
||||
DBGC_HDA ( test, 0, &actual, sizeof ( actual ) );
|
||||
|
||||
/* Compare against expected result */
|
||||
okx ( memcmp ( &actual, &test->expected,
|
||||
sizeof ( test->expected ) ) == 0, file, line );
|
||||
}
|
||||
#define x25519_key_ok( test ) \
|
||||
x25519_key_okx ( test, __FILE__, __LINE__ )
|
||||
|
||||
/* Test multiplying small numbers */
|
||||
X25519_MULTIPLY_TEST ( multiply_small, MULTIPLICAND ( 6 ),
|
||||
MULTIPLIER ( 9 ), EXPECTED ( 6 * 9 ) );
|
||||
|
||||
/* Test exact multiple of field prime */
|
||||
X25519_MULTIPLY_TEST ( multiply_k_p,
|
||||
MULTIPLICAND ( 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xed ),
|
||||
MULTIPLIER ( 0x00, 0xe8, 0x0d, 0x83, 0xd4, 0xe9, 0x1e, 0xdd, 0x7a,
|
||||
0x45, 0x14, 0x87, 0xb7, 0xfc, 0x62, 0x54, 0x1f, 0xb2,
|
||||
0x97, 0x24, 0xde, 0xfa, 0xd3, 0xe7, 0x3e, 0x83, 0x93,
|
||||
0x60, 0xbc, 0x20, 0x97, 0x9b, 0x22 ),
|
||||
EXPECTED ( 0x00 ) );
|
||||
|
||||
/* 0x0223b8c1e9392456de3eb13b9046685257bdd640fb06671ad11c80317fa3b1799d *
|
||||
* 0x006c031199972a846916419f828b9d2434e465e150bd9c66b3ad3c2d6d1a3d1fa7 =
|
||||
* 0x1ba87e982f7c477616b4d5136ba54733e40081c1c2e27d864aa178ce893d1297 (mod p)
|
||||
*/
|
||||
X25519_MULTIPLY_TEST ( multiply_1,
|
||||
MULTIPLICAND ( 0x02, 0x23, 0xb8, 0xc1, 0xe9, 0x39, 0x24, 0x56, 0xde,
|
||||
0x3e, 0xb1, 0x3b, 0x90, 0x46, 0x68, 0x52, 0x57, 0xbd,
|
||||
0xd6, 0x40, 0xfb, 0x06, 0x67, 0x1a, 0xd1, 0x1c, 0x80,
|
||||
0x31, 0x7f, 0xa3, 0xb1, 0x79, 0x9d ),
|
||||
MULTIPLIER ( 0x00, 0x6c, 0x03, 0x11, 0x99, 0x97, 0x2a, 0x84, 0x69,
|
||||
0x16, 0x41, 0x9f, 0x82, 0x8b, 0x9d, 0x24, 0x34, 0xe4,
|
||||
0x65, 0xe1, 0x50, 0xbd, 0x9c, 0x66, 0xb3, 0xad, 0x3c,
|
||||
0x2d, 0x6d, 0x1a, 0x3d, 0x1f, 0xa7 ),
|
||||
EXPECTED ( 0x1b, 0xa8, 0x7e, 0x98, 0x2f, 0x7c, 0x47, 0x76, 0x16, 0xb4,
|
||||
0xd5, 0x13, 0x6b, 0xa5, 0x47, 0x33, 0xe4, 0x00, 0x81, 0xc1,
|
||||
0xc2, 0xe2, 0x7d, 0x86, 0x4a, 0xa1, 0x78, 0xce, 0x89, 0x3d,
|
||||
0x12, 0x97 ) );
|
||||
|
||||
/* 0x008fadc1a606cb0fb39a1de644815ef6d13b8faa1837f8a88b17fc695a07a0ca6e *
|
||||
* 0x0196da1dac72ff5d2a386ecbe06b65a6a48b8148f6b38a088ca65ed389b74d0fb1 =
|
||||
* 0x351f7bf75ef580249ed6f9ff3996463b0730a1d49b5d36b863e192591157e950 (mod p)
|
||||
*/
|
||||
X25519_MULTIPLY_TEST ( multiply_2,
|
||||
MULTIPLICAND ( 0x00, 0x8f, 0xad, 0xc1, 0xa6, 0x06, 0xcb, 0x0f, 0xb3,
|
||||
0x9a, 0x1d, 0xe6, 0x44, 0x81, 0x5e, 0xf6, 0xd1, 0x3b,
|
||||
0x8f, 0xaa, 0x18, 0x37, 0xf8, 0xa8, 0x8b, 0x17, 0xfc,
|
||||
0x69, 0x5a, 0x07, 0xa0, 0xca, 0x6e ),
|
||||
MULTIPLIER ( 0x01, 0x96, 0xda, 0x1d, 0xac, 0x72, 0xff, 0x5d, 0x2a,
|
||||
0x38, 0x6e, 0xcb, 0xe0, 0x6b, 0x65, 0xa6, 0xa4, 0x8b,
|
||||
0x81, 0x48, 0xf6, 0xb3, 0x8a, 0x08, 0x8c, 0xa6, 0x5e,
|
||||
0xd3, 0x89, 0xb7, 0x4d, 0x0f, 0xb1 ),
|
||||
EXPECTED ( 0x35, 0x1f, 0x7b, 0xf7, 0x5e, 0xf5, 0x80, 0x24, 0x9e, 0xd6,
|
||||
0xf9, 0xff, 0x39, 0x96, 0x46, 0x3b, 0x07, 0x30, 0xa1, 0xd4,
|
||||
0x9b, 0x5d, 0x36, 0xb8, 0x63, 0xe1, 0x92, 0x59, 0x11, 0x57,
|
||||
0xe9, 0x50 ) );
|
||||
|
||||
/* 0x016c307511b2b9437a28df6ec4ce4a2bbdc241330b01a9e71fde8a774bcf36d58b *
|
||||
* 0x0117be31111a2a73ed562b0f79c37459eef50bea63371ecd7b27cd813047229389 =
|
||||
* 0x6b43b5185965f8f0920f31ae1b2cefadd7b078fecf68dbeaa17b9c385b558329 (mod p)
|
||||
*/
|
||||
X25519_MULTIPLY_TEST ( multiply_3,
|
||||
MULTIPLICAND ( 0x01, 0x6c, 0x30, 0x75, 0x11, 0xb2, 0xb9, 0x43, 0x7a,
|
||||
0x28, 0xdf, 0x6e, 0xc4, 0xce, 0x4a, 0x2b, 0xbd, 0xc2,
|
||||
0x41, 0x33, 0x0b, 0x01, 0xa9, 0xe7, 0x1f, 0xde, 0x8a,
|
||||
0x77, 0x4b, 0xcf, 0x36, 0xd5, 0x8b ),
|
||||
MULTIPLIER ( 0x01, 0x17, 0xbe, 0x31, 0x11, 0x1a, 0x2a, 0x73, 0xed,
|
||||
0x56, 0x2b, 0x0f, 0x79, 0xc3, 0x74, 0x59, 0xee, 0xf5,
|
||||
0x0b, 0xea, 0x63, 0x37, 0x1e, 0xcd, 0x7b, 0x27, 0xcd,
|
||||
0x81, 0x30, 0x47, 0x22, 0x93, 0x89 ),
|
||||
EXPECTED ( 0x6b, 0x43, 0xb5, 0x18, 0x59, 0x65, 0xf8, 0xf0, 0x92, 0x0f,
|
||||
0x31, 0xae, 0x1b, 0x2c, 0xef, 0xad, 0xd7, 0xb0, 0x78, 0xfe,
|
||||
0xcf, 0x68, 0xdb, 0xea, 0xa1, 0x7b, 0x9c, 0x38, 0x5b, 0x55,
|
||||
0x83, 0x29 ) );
|
||||
|
||||
/* 0x020b1f9163ce9ff57f43b7a3a69a8dca03580d7b71d8f564135be6128e18c26797 *
|
||||
* 0x018d5288f1142c3fe860e7a113ec1b8ca1f91e1d4c1ff49b7889463e85759cde66 =
|
||||
* 0x28a77d3c8a14323d63b288dbd40315b3f192b8485d86a02cb87d3dfb7a0b5447 (mod p)
|
||||
*/
|
||||
X25519_MULTIPLY_TEST ( multiply_4,
|
||||
MULTIPLICAND ( 0x02, 0x0b, 0x1f, 0x91, 0x63, 0xce, 0x9f, 0xf5, 0x7f,
|
||||
0x43, 0xb7, 0xa3, 0xa6, 0x9a, 0x8d, 0xca, 0x03, 0x58,
|
||||
0x0d, 0x7b, 0x71, 0xd8, 0xf5, 0x64, 0x13, 0x5b, 0xe6,
|
||||
0x12, 0x8e, 0x18, 0xc2, 0x67, 0x97 ),
|
||||
MULTIPLIER ( 0x01, 0x8d, 0x52, 0x88, 0xf1, 0x14, 0x2c, 0x3f, 0xe8,
|
||||
0x60, 0xe7, 0xa1, 0x13, 0xec, 0x1b, 0x8c, 0xa1, 0xf9,
|
||||
0x1e, 0x1d, 0x4c, 0x1f, 0xf4, 0x9b, 0x78, 0x89, 0x46,
|
||||
0x3e, 0x85, 0x75, 0x9c, 0xde, 0x66 ),
|
||||
EXPECTED ( 0x28, 0xa7, 0x7d, 0x3c, 0x8a, 0x14, 0x32, 0x3d, 0x63, 0xb2,
|
||||
0x88, 0xdb, 0xd4, 0x03, 0x15, 0xb3, 0xf1, 0x92, 0xb8, 0x48,
|
||||
0x5d, 0x86, 0xa0, 0x2c, 0xb8, 0x7d, 0x3d, 0xfb, 0x7a, 0x0b,
|
||||
0x54, 0x47 ) );
|
||||
|
||||
/* 0x023139d32c93cd59bf5c941cf0dc98d2c1e2acf72f9e574f7aa0ee89aed453dd32 *
|
||||
* 0x03146d3f31fc377a4c4a15544dc5e7ce8a3a578a8ea9488d990bbb259911ce5dd2 =
|
||||
* 0x4bdb7a35c0a5182000aa67554741e88cfdf460a78c6fae07adf83d2f005d2767 (mod p)
|
||||
*/
|
||||
X25519_MULTIPLY_TEST ( multiply_5,
|
||||
MULTIPLICAND ( 0x02, 0x31, 0x39, 0xd3, 0x2c, 0x93, 0xcd, 0x59, 0xbf,
|
||||
0x5c, 0x94, 0x1c, 0xf0, 0xdc, 0x98, 0xd2, 0xc1, 0xe2,
|
||||
0xac, 0xf7, 0x2f, 0x9e, 0x57, 0x4f, 0x7a, 0xa0, 0xee,
|
||||
0x89, 0xae, 0xd4, 0x53, 0xdd, 0x32 ),
|
||||
MULTIPLIER ( 0x03, 0x14, 0x6d, 0x3f, 0x31, 0xfc, 0x37, 0x7a, 0x4c,
|
||||
0x4a, 0x15, 0x54, 0x4d, 0xc5, 0xe7, 0xce, 0x8a, 0x3a,
|
||||
0x57, 0x8a, 0x8e, 0xa9, 0x48, 0x8d, 0x99, 0x0b, 0xbb,
|
||||
0x25, 0x99, 0x11, 0xce, 0x5d, 0xd2 ),
|
||||
EXPECTED ( 0x4b, 0xdb, 0x7a, 0x35, 0xc0, 0xa5, 0x18, 0x20, 0x00, 0xaa,
|
||||
0x67, 0x55, 0x47, 0x41, 0xe8, 0x8c, 0xfd, 0xf4, 0x60, 0xa7,
|
||||
0x8c, 0x6f, 0xae, 0x07, 0xad, 0xf8, 0x3d, 0x2f, 0x00, 0x5d,
|
||||
0x27, 0x67 ) );
|
||||
|
||||
/* 0x01d58842dea2bc372f7412b29347294739614ff3d719db3ad0ddd1dfb23b982ef8 ^ -1 =
|
||||
* 0x093ff51750809d181a9a5481c564e37cff618def8ec45f464b1a6e24f8b826bd (mod p)
|
||||
*/
|
||||
X25519_INVERT_TEST ( invert_1,
|
||||
INVERTEND ( 0x01, 0xd5, 0x88, 0x42, 0xde, 0xa2, 0xbc, 0x37, 0x2f,
|
||||
0x74, 0x12, 0xb2, 0x93, 0x47, 0x29, 0x47, 0x39, 0x61,
|
||||
0x4f, 0xf3, 0xd7, 0x19, 0xdb, 0x3a, 0xd0, 0xdd, 0xd1,
|
||||
0xdf, 0xb2, 0x3b, 0x98, 0x2e, 0xf8 ),
|
||||
EXPECTED ( 0x09, 0x3f, 0xf5, 0x17, 0x50, 0x80, 0x9d, 0x18, 0x1a, 0x9a,
|
||||
0x54, 0x81, 0xc5, 0x64, 0xe3, 0x7c, 0xff, 0x61, 0x8d, 0xef,
|
||||
0x8e, 0xc4, 0x5f, 0x46, 0x4b, 0x1a, 0x6e, 0x24, 0xf8, 0xb8,
|
||||
0x26, 0xbd ) );
|
||||
|
||||
/* 0x02efc89849b3aa7efe4458a885ab9099a435a240ae5af305535ec42e0829a3b2e9 ^ -1 =
|
||||
* 0x591607b163e89d0ac33a62c881e984a25d3826e3db5ce229af240dc58e5b579a (mod p)
|
||||
*/
|
||||
X25519_INVERT_TEST ( invert_2,
|
||||
INVERTEND ( 0x02, 0xef, 0xc8, 0x98, 0x49, 0xb3, 0xaa, 0x7e, 0xfe,
|
||||
0x44, 0x58, 0xa8, 0x85, 0xab, 0x90, 0x99, 0xa4, 0x35,
|
||||
0xa2, 0x40, 0xae, 0x5a, 0xf3, 0x05, 0x53, 0x5e, 0xc4,
|
||||
0x2e, 0x08, 0x29, 0xa3, 0xb2, 0xe9 ),
|
||||
EXPECTED ( 0x59, 0x16, 0x07, 0xb1, 0x63, 0xe8, 0x9d, 0x0a, 0xc3, 0x3a,
|
||||
0x62, 0xc8, 0x81, 0xe9, 0x84, 0xa2, 0x5d, 0x38, 0x26, 0xe3,
|
||||
0xdb, 0x5c, 0xe2, 0x29, 0xaf, 0x24, 0x0d, 0xc5, 0x8e, 0x5b,
|
||||
0x57, 0x9a ) );
|
||||
|
||||
/* 0x003eabedcbbaa80dd488bd64072bcfbe01a28defe39bf0027312476f57a5e5a5ab ^ -1 =
|
||||
* 0x7d87c2e565b27c5038181a0a7cae9ebe826c8afc1f77128a4d62cce96d2759a2 (mod p)
|
||||
*/
|
||||
X25519_INVERT_TEST ( invert_3,
|
||||
INVERTEND ( 0x00, 0x3e, 0xab, 0xed, 0xcb, 0xba, 0xa8, 0x0d, 0xd4,
|
||||
0x88, 0xbd, 0x64, 0x07, 0x2b, 0xcf, 0xbe, 0x01, 0xa2,
|
||||
0x8d, 0xef, 0xe3, 0x9b, 0xf0, 0x02, 0x73, 0x12, 0x47,
|
||||
0x6f, 0x57, 0xa5, 0xe5, 0xa5, 0xab ),
|
||||
EXPECTED ( 0x7d, 0x87, 0xc2, 0xe5, 0x65, 0xb2, 0x7c, 0x50, 0x38, 0x18,
|
||||
0x1a, 0x0a, 0x7c, 0xae, 0x9e, 0xbe, 0x82, 0x6c, 0x8a, 0xfc,
|
||||
0x1f, 0x77, 0x12, 0x8a, 0x4d, 0x62, 0xcc, 0xe9, 0x6d, 0x27,
|
||||
0x59, 0xa2 ) );
|
||||
|
||||
/* 0x008e944239b02b61c4a3d70628ece66fa2fd5166e6451b4cf36123fdf77656af72 ^ -1 =
|
||||
* 0x08e96161a0eee1b29af396f154950d5c715dc61aff66ee97377ab22adf3321d7 (mod p)
|
||||
*/
|
||||
X25519_INVERT_TEST ( invert_4,
|
||||
INVERTEND ( 0x00, 0x8e, 0x94, 0x42, 0x39, 0xb0, 0x2b, 0x61, 0xc4,
|
||||
0xa3, 0xd7, 0x06, 0x28, 0xec, 0xe6, 0x6f, 0xa2, 0xfd,
|
||||
0x51, 0x66, 0xe6, 0x45, 0x1b, 0x4c, 0xf3, 0x61, 0x23,
|
||||
0xfd, 0xf7, 0x76, 0x56, 0xaf, 0x72 ),
|
||||
EXPECTED ( 0x08, 0xe9, 0x61, 0x61, 0xa0, 0xee, 0xe1, 0xb2, 0x9a, 0xf3,
|
||||
0x96, 0xf1, 0x54, 0x95, 0x0d, 0x5c, 0x71, 0x5d, 0xc6, 0x1a,
|
||||
0xff, 0x66, 0xee, 0x97, 0x37, 0x7a, 0xb2, 0x2a, 0xdf, 0x33,
|
||||
0x21, 0xd7 ) );
|
||||
|
||||
/* 0x00d261a7ab3aa2e4f90e51f30dc6a7ee39c4b032ccd7c524a55304317faf42e12f ^ -1 =
|
||||
* 0x0738781c0aeabfbe6e840c85bd30996ef71bc54988ce16cedd5ab4f30c281597 (mod p)
|
||||
*/
|
||||
X25519_INVERT_TEST ( invert_5,
|
||||
INVERTEND ( 0x00, 0xd2, 0x61, 0xa7, 0xab, 0x3a, 0xa2, 0xe4, 0xf9,
|
||||
0x0e, 0x51, 0xf3, 0x0d, 0xc6, 0xa7, 0xee, 0x39, 0xc4,
|
||||
0xb0, 0x32, 0xcc, 0xd7, 0xc5, 0x24, 0xa5, 0x53, 0x04,
|
||||
0x31, 0x7f, 0xaf, 0x42, 0xe1, 0x2f ),
|
||||
EXPECTED ( 0x07, 0x38, 0x78, 0x1c, 0x0a, 0xea, 0xbf, 0xbe, 0x6e, 0x84,
|
||||
0x0c, 0x85, 0xbd, 0x30, 0x99, 0x6e, 0xf7, 0x1b, 0xc5, 0x49,
|
||||
0x88, 0xce, 0x16, 0xce, 0xdd, 0x5a, 0xb4, 0xf3, 0x0c, 0x28,
|
||||
0x15, 0x97 ) );
|
||||
|
||||
/* Base: 0xe6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c
|
||||
* Scalar: 0xa546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4
|
||||
* Result: 0xc3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552
|
||||
*/
|
||||
X25519_KEY_TEST ( rfc7748_1, 1,
|
||||
BASE ( 0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94,
|
||||
0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec,
|
||||
0x26, 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab,
|
||||
0x1c, 0x4c ),
|
||||
SCALAR ( 0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16,
|
||||
0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a,
|
||||
0xc1, 0xfc, 0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44,
|
||||
0x9a, 0xc4 ),
|
||||
EXPECTED ( 0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94,
|
||||
0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03,
|
||||
0x49, 0x1c, 0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2,
|
||||
0x85, 0x52 ) );
|
||||
|
||||
/* Base: 0xe5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493
|
||||
* Scalar: 0x4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d
|
||||
* Result: 0x95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957
|
||||
*/
|
||||
X25519_KEY_TEST ( rfc7748_2, 1,
|
||||
BASE ( 0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3, 0xf4, 0xb7,
|
||||
0x95, 0x9d, 0x05, 0x38, 0xae, 0x2c, 0x31, 0xdb, 0xe7, 0x10,
|
||||
0x6f, 0xc0, 0x3c, 0x3e, 0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15,
|
||||
0xa4, 0x93 ),
|
||||
SCALAR ( 0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c, 0x5a, 0xd2,
|
||||
0x26, 0x91, 0x95, 0x7d, 0x6a, 0xf5, 0xc1, 0x1b, 0x64, 0x21,
|
||||
0xe0, 0xea, 0x01, 0xd4, 0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18,
|
||||
0xba, 0x0d ),
|
||||
EXPECTED ( 0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad,
|
||||
0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8, 0x8b, 0x59, 0x5a, 0x68,
|
||||
0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac,
|
||||
0x79, 0x57 ) );
|
||||
|
||||
/* Base: 0x0900000000000000000000000000000000000000000000000000000000000000
|
||||
* Scalar: 0x0900000000000000000000000000000000000000000000000000000000000000
|
||||
* Result: 0x422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079
|
||||
*/
|
||||
X25519_KEY_TEST ( rfc7748_3, 1,
|
||||
BASE ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00 ),
|
||||
SCALAR ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00 ),
|
||||
EXPECTED ( 0x42, 0x2c, 0x8e, 0x7a, 0x62, 0x27, 0xd7, 0xbc, 0xa1, 0x35,
|
||||
0x0b, 0x3e, 0x2b, 0xb7, 0x27, 0x9f, 0x78, 0x97, 0xb8, 0x7b,
|
||||
0xb6, 0x85, 0x4b, 0x78, 0x3c, 0x60, 0xe8, 0x03, 0x11, 0xae,
|
||||
0x30, 0x79 ) );
|
||||
|
||||
/* Base: 0x0900000000000000000000000000000000000000000000000000000000000000
|
||||
* Scalar: 0x0900000000000000000000000000000000000000000000000000000000000000
|
||||
* Result: 0xb1a5a73158904c020866c13939dd7e1aa26852ee1d2609c92e5a8f1debe2150a
|
||||
* (after 100 iterations)
|
||||
*
|
||||
* RFC 7748 gives test vectors for 1000 and 1000000 iterations with
|
||||
* these starting values. This test case stops after 100 iterations
|
||||
* to avoid a pointlessly slow test cycle in the common case of
|
||||
* running tests under Valgrind.
|
||||
*/
|
||||
X25519_KEY_TEST ( rfc7748_4_100, 100,
|
||||
BASE ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00 ),
|
||||
SCALAR ( 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00 ),
|
||||
EXPECTED ( 0xb1, 0xa5, 0xa7, 0x31, 0x58, 0x90, 0x4c, 0x02, 0x08, 0x66,
|
||||
0xc1, 0x39, 0x39, 0xdd, 0x7e, 0x1a, 0xa2, 0x68, 0x52, 0xee,
|
||||
0x1d, 0x26, 0x09, 0xc9, 0x2e, 0x5a, 0x8f, 0x1d, 0xeb, 0xe2,
|
||||
0x15, 0x0a ) );
|
||||
|
||||
/**
|
||||
* Perform X25519 self-tests
|
||||
*
|
||||
*/
|
||||
static void x25519_test_exec ( void ) {
|
||||
|
||||
/* Perform multiplication tests */
|
||||
x25519_multiply_ok ( &multiply_small );
|
||||
x25519_multiply_ok ( &multiply_k_p );
|
||||
x25519_multiply_ok ( &multiply_1 );
|
||||
x25519_multiply_ok ( &multiply_2 );
|
||||
x25519_multiply_ok ( &multiply_3 );
|
||||
x25519_multiply_ok ( &multiply_4 );
|
||||
x25519_multiply_ok ( &multiply_5 );
|
||||
|
||||
/* Perform multiplicative inversion tests */
|
||||
x25519_invert_ok ( &invert_1 );
|
||||
x25519_invert_ok ( &invert_2 );
|
||||
x25519_invert_ok ( &invert_3 );
|
||||
x25519_invert_ok ( &invert_4 );
|
||||
x25519_invert_ok ( &invert_5 );
|
||||
|
||||
/* Perform key exchange tests */
|
||||
x25519_key_ok ( &rfc7748_1 );
|
||||
x25519_key_ok ( &rfc7748_2 );
|
||||
x25519_key_ok ( &rfc7748_3 );
|
||||
x25519_key_ok ( &rfc7748_4_100 );
|
||||
}
|
||||
|
||||
/** X25519 self-test */
|
||||
struct self_test x25519_test __self_test = {
|
||||
.name = "x25519",
|
||||
.exec = x25519_test_exec,
|
||||
};
|
||||
Reference in New Issue
Block a user