[libc][fenv] Refactor x86 fenv implementations to make it work for various fenv_t. (#165015)

This commit is contained in:
lntue
2025-12-05 16:00:10 -05:00
committed by GitHub
parent f558c30146
commit 4c59219fc9
20 changed files with 1090 additions and 694 deletions

View File

@@ -115,6 +115,10 @@ function(_get_compile_options_from_config output_var)
list(APPEND config_options "-DLIBC_THREAD_MODE=${LIBC_CONF_THREAD_MODE}")
endif()
if(LIBC_CONF_TRAP_ON_RAISE_FP_EXCEPT)
list(APPEND config_options "-DLIBC_TRAP_ON_RAISE_FP_EXCEPT")
endif()
set(${output_var} ${config_options} PARENT_SCOPE)
endfunction(_get_compile_options_from_config)

View File

@@ -141,5 +141,11 @@
"value": "LIBC_WCTYPE_MODE_ASCII",
"doc": "The implementation used for wctype, acceptable values are LIBC_WCTYPE_MODE_ASCII and LIBC_WCTYPE_MODE_UTF8."
}
},
"fenv": {
"LIBC_CONF_TRAP_ON_RAISE_FP_EXCEPT": {
"value": false,
"doc": "Trap with SIGFPE when feraiseexcept is called with unmasked floating point exceptions, similar to glibc's behavior. This is currently working only on x86 with SSE."
}
}
}

View File

@@ -30,6 +30,8 @@ to learn about the defaults for your platform and target.
- ``LIBC_CONF_KEEP_FRAME_POINTER``: Keep frame pointer in functions for better debugging experience.
* **"errno" options**
- ``LIBC_CONF_ERRNO_MODE``: The implementation used for errno, acceptable values are LIBC_ERRNO_MODE_DEFAULT, LIBC_ERRNO_MODE_UNDEFINED, LIBC_ERRNO_MODE_THREAD_LOCAL, LIBC_ERRNO_MODE_SHARED, LIBC_ERRNO_MODE_EXTERNAL, and LIBC_ERRNO_MODE_SYSTEM_INLINE.
* **"fenv" options**
- ``LIBC_CONF_TRAP_ON_RAISE_FP_EXCEPT``: Trap with SIGFPE when feraiseexcept is called with unmasked floating point exceptions, similar to glibc's behavior. This is currently working only on x86 with SSE.
* **"general" options**
- ``LIBC_ADD_NULL_CHECKS``: Add nullptr checks in the library's implementations to some functions for which passing nullptr is undefined behavior.
* **"math" options**

View File

@@ -14,9 +14,10 @@
#define FE_INVALID 0x4
#define FE_OVERFLOW 0x8
#define FE_UNDERFLOW 0x10
#define __FE_DENORM 0x20
#define FE_DENORM 0x20
#define FE_ALL_EXCEPT \
(FE_DIVBYZERO | FE_INEXACT | FE_INVALID | FE_OVERFLOW | FE_UNDERFLOW)
(FE_DIVBYZERO | FE_INEXACT | FE_INVALID | FE_OVERFLOW | FE_UNDERFLOW | \
FE_DENORM)
#define FE_DOWNWARD 0x400
#define FE_TONEAREST 0

View File

@@ -26,6 +26,16 @@ namespace cpp {
#define LLVM_LIBC_HAS_BUILTIN_MEMCPY_INLINE
#endif
template <unsigned N>
LIBC_INLINE static void inline_copy(const char *from, char *to) {
#if __has_builtin(__builtin_memcpy_inline)
__builtin_memcpy_inline(to, from, N);
#else
for (unsigned i = 0; i < N; ++i)
to[i] = from[i];
#endif // __has_builtin(__builtin_memcpy_inline)
}
// This implementation of bit_cast requires trivially-constructible To, to avoid
// UB in the implementation.
template <typename To, typename From>
@@ -43,16 +53,26 @@ bit_cast(const From &from) {
To to{};
char *dst = reinterpret_cast<char *>(&to);
const char *src = reinterpret_cast<const char *>(&from);
#if __has_builtin(__builtin_memcpy_inline)
__builtin_memcpy_inline(dst, src, sizeof(To));
#else
for (unsigned i = 0; i < sizeof(To); ++i)
dst[i] = src[i];
#endif // __has_builtin(__builtin_memcpy_inline)
inline_copy<sizeof(From)>(src, dst);
return to;
#endif // __has_builtin(__builtin_bit_cast)
}
// The following simple bit copy from a smaller type to maybe-larger type.
template <typename To, typename From>
LIBC_INLINE constexpr cpp::enable_if_t<
(sizeof(To) >= sizeof(From)) &&
cpp::is_trivially_constructible<To>::value &&
cpp::is_trivially_copyable<To>::value &&
cpp::is_trivially_copyable<From>::value,
void>
bit_copy(const From &from, To &to) {
MSAN_UNPOISON(&from, sizeof(From));
char *dst = reinterpret_cast<char *>(&to);
const char *src = reinterpret_cast<const char *>(&from);
inline_copy<sizeof(From)>(src, dst);
}
template <typename T>
[[nodiscard]] LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_unsigned_v<T>,
bool>

View File

@@ -7,6 +7,7 @@ add_header_library(
libc.hdr.fenv_macros
libc.hdr.math_macros
libc.hdr.stdint_proxy
libc.src.__support.CPP.bit
libc.src.__support.CPP.type_traits
libc.src.__support.macros.attributes
libc.src.errno.errno

View File

@@ -31,8 +31,7 @@
// the dummy implementations below. Once a proper x86_64 darwin fenv is set up,
// the apple condition here should be removed.
// TODO: fully support fenv for MSVC.
#elif defined(LIBC_TARGET_ARCH_IS_X86) && !defined(__APPLE__) && \
!defined(LIBC_COMPILER_IS_MSVC)
#elif defined(LIBC_TARGET_ARCH_IS_X86) && !defined(__APPLE__)
#include "x86_64/FEnvImpl.h"
#elif defined(LIBC_TARGET_ARCH_IS_ARM) && defined(__ARM_FP) && \
!defined(LIBC_COMPILER_IS_MSVC)
@@ -110,12 +109,7 @@ raise_except_if_required([[maybe_unused]] int excepts) {
} else {
#ifndef LIBC_MATH_HAS_NO_EXCEPT
if (math_errhandling & MATH_ERREXCEPT)
#ifdef LIBC_TARGET_ARCH_IS_X86_64
return raise_except</*SKIP_X87_FPU*/ true>(excepts);
#else // !LIBC_TARGET_ARCH_IS_X86
return raise_except(excepts);
#endif // LIBC_TARGET_ARCH_IS_X86
#endif // LIBC_MATH_HAS_NO_EXCEPT
return 0;
}

View File

@@ -9,642 +9,244 @@
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENVIMPL_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENVIMPL_H
#include "hdr/fenv_macros.h"
#include "hdr/stdint_proxy.h"
#include "hdr/types/fenv_t.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/macros/attributes.h" // LIBC_INLINE
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h"
#include "src/__support/macros/properties/architectures.h"
#include "src/__support/macros/properties/compiler.h"
#include "src/__support/macros/properties/types.h"
#if !defined(LIBC_TARGET_ARCH_IS_X86)
#error "Invalid include"
#endif
#include "hdr/stdint_proxy.h"
#include "hdr/types/fenv_t.h"
#include "src/__support/macros/sanitizer.h"
#if (defined(__i386__) && !defined(__SSE__)) || \
(defined(_M_IX86_FP) && (_M_IX86_FP == 0))
// When SSE is not available, we will only touch x87 floating point environment.
#include "src/__support/FPUtil/x86_64/fenv_x87_only.h"
#else // __SSE__
#ifndef LIBC_COMPILER_IS_MSVC
#include "src/__support/FPUtil/x86_64/fenv_x87_utils.h"
#endif // !LIBC_COMPILER_IS_MSVC
#include "src/__support/FPUtil/x86_64/fenv_mxcsr_utils.h"
namespace LIBC_NAMESPACE_DECL {
namespace fputil {
namespace internal {
LIBC_INLINE static int clear_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
sse::clear_except(x86_excepts);
// Normally, one should be able to define FE_* macros to the exact rounding mode
// encodings. However, since we want LLVM libc to be compiled against headers
// from other libcs, we cannot assume that FE_* macros are always defined in
// such a manner. So, we will define enums corresponding to the x86_64 bit
// encodings. The implementations can map from FE_* to the corresponding enum
// values.
// The rounding control values in the x87 control register and the MXCSR
// register have the same 2-bit enoding but have different bit positions.
// See below for the bit positions.
struct RoundingControlValue {
static constexpr uint16_t TO_NEAREST = 0x0;
static constexpr uint16_t DOWNWARD = 0x1;
static constexpr uint16_t UPWARD = 0x2;
static constexpr uint16_t TOWARD_ZERO = 0x3;
};
static constexpr uint16_t X87_ROUNDING_CONTROL_BIT_POSITION = 10;
static constexpr uint16_t MXCSR_ROUNDING_CONTROL_BIT_POSITION = 13;
// The exception flags in the x87 status register and the MXCSR have the same
// encoding as well as the same bit positions.
struct ExceptionFlags {
static constexpr uint16_t INVALID_F = 0x1;
// Some libcs define __FE_DENORM corresponding to the denormal input
// exception and include it in FE_ALL_EXCEPTS. We define and use it to
// support compiling against headers provided by such libcs.
static constexpr uint16_t DENORMAL_F = 0x2;
static constexpr uint16_t DIV_BY_ZERO_F = 0x4;
static constexpr uint16_t OVERFLOW_F = 0x8;
static constexpr uint16_t UNDERFLOW_F = 0x10;
static constexpr uint16_t INEXACT_F = 0x20;
};
// The exception control bits occupy six bits, one bit for each exception.
// In the x87 control word, they occupy the first 6 bits. In the MXCSR
// register, they occupy bits 7 to 12.
static constexpr uint16_t X87_EXCEPTION_CONTROL_BIT_POSITION = 0;
static constexpr uint16_t X87_EXCEPTION_CONTROL_BIT_POSITION_HIGH = 24;
static constexpr uint16_t MXCSR_EXCEPTION_CONTOL_BIT_POISTION = 7;
// Exception flags are individual bits in the corresponding registers.
// So, we just OR the bit values to get the full set of exceptions.
LIBC_INLINE uint16_t get_status_value_for_except(int excepts) {
// We will make use of the fact that exception control bits are single
// bit flags in the control registers.
return ((excepts & FE_INVALID) ? ExceptionFlags::INVALID_F : 0) |
#ifdef __FE_DENORM
((excepts & __FE_DENORM) ? ExceptionFlags::DENORMAL_F : 0) |
#endif // __FE_DENORM
((excepts & FE_DIVBYZERO) ? ExceptionFlags::DIV_BY_ZERO_F : 0) |
((excepts & FE_OVERFLOW) ? ExceptionFlags::OVERFLOW_F : 0) |
((excepts & FE_UNDERFLOW) ? ExceptionFlags::UNDERFLOW_F : 0) |
((excepts & FE_INEXACT) ? ExceptionFlags::INEXACT_F : 0);
}
LIBC_INLINE int exception_status_to_macro(uint16_t status) {
return ((status & ExceptionFlags::INVALID_F) ? FE_INVALID : 0) |
#ifdef __FE_DENORM
((status & ExceptionFlags::DENORMAL_F) ? __FE_DENORM : 0) |
#endif // __FE_DENORM
((status & ExceptionFlags::DIV_BY_ZERO_F) ? FE_DIVBYZERO : 0) |
((status & ExceptionFlags::OVERFLOW_F) ? FE_OVERFLOW : 0) |
((status & ExceptionFlags::UNDERFLOW_F) ? FE_UNDERFLOW : 0) |
((status & ExceptionFlags::INEXACT_F) ? FE_INEXACT : 0);
}
struct X87StateDescriptor {
uint16_t control_word;
uint16_t unused1;
uint16_t status_word;
uint16_t unused2;
// TODO: Elaborate the remaining 20 bytes as required.
uint32_t _[5];
};
LIBC_INLINE uint16_t get_x87_control_word() {
uint16_t w;
__asm__ __volatile__("fnstcw %0" : "=m"(w)::);
MSAN_UNPOISON(&w, sizeof(w));
return w;
}
LIBC_INLINE void write_x87_control_word(uint16_t w) {
__asm__ __volatile__("fldcw %0" : : "m"(w) :);
}
LIBC_INLINE uint16_t get_x87_status_word() {
uint16_t w;
__asm__ __volatile__("fnstsw %0" : "=m"(w)::);
MSAN_UNPOISON(&w, sizeof(w));
return w;
}
LIBC_INLINE void clear_x87_exceptions() {
__asm__ __volatile__("fnclex" : : :);
}
LIBC_INLINE uint32_t get_mxcsr() {
uint32_t w;
__asm__ __volatile__("stmxcsr %0" : "=m"(w)::);
MSAN_UNPOISON(&w, sizeof(w));
return w;
}
LIBC_INLINE void write_mxcsr(uint32_t w) {
__asm__ __volatile__("ldmxcsr %0" : : "m"(w) :);
}
LIBC_INLINE void get_x87_state_descriptor(X87StateDescriptor &s) {
__asm__ __volatile__("fnstenv %0" : "=m"(s));
MSAN_UNPOISON(&s, sizeof(s));
}
LIBC_INLINE void write_x87_state_descriptor(const X87StateDescriptor &s) {
__asm__ __volatile__("fldenv %0" : : "m"(s) :);
}
LIBC_INLINE void fwait() { __asm__ __volatile__("fwait"); }
} // namespace internal
LIBC_INLINE int enable_except(int excepts) {
// In the x87 control word and in MXCSR, an exception is blocked
// if the corresponding bit is set. That is the reason for all the
// bit-flip operations below as we need to turn the bits to zero
// to enable them.
uint16_t bit_mask = internal::get_status_value_for_except(excepts);
uint16_t x87_cw = internal::get_x87_control_word();
uint16_t old_excepts = ~x87_cw & 0x3F; // Save previously enabled exceptions.
x87_cw &= ~bit_mask;
internal::write_x87_control_word(x87_cw);
// Enabling SSE exceptions via MXCSR is a nice thing to do but
// might not be of much use practically as SSE exceptions and the x87
// exceptions are independent of each other.
uint32_t mxcsr = internal::get_mxcsr();
mxcsr &= ~(bit_mask << internal::MXCSR_EXCEPTION_CONTOL_BIT_POISTION);
internal::write_mxcsr(mxcsr);
// Since the x87 exceptions and SSE exceptions are independent of each,
// it doesn't make much sence to report both in the return value. Most
// often, the standard floating point functions deal with FPU operations
// so we will retrun only the old x87 exceptions.
return internal::exception_status_to_macro(old_excepts);
}
LIBC_INLINE int disable_except(int excepts) {
// In the x87 control word and in MXCSR, an exception is blocked
// if the corresponding bit is set.
uint16_t bit_mask = internal::get_status_value_for_except(excepts);
uint16_t x87_cw = internal::get_x87_control_word();
uint16_t old_excepts = ~x87_cw & 0x3F; // Save previously enabled exceptions.
x87_cw |= bit_mask;
internal::write_x87_control_word(x87_cw);
// Just like in enable_except, it is not clear if disabling SSE exceptions
// is required. But, we will still do it only as a "nice thing to do".
uint32_t mxcsr = internal::get_mxcsr();
mxcsr |= (bit_mask << internal::MXCSR_EXCEPTION_CONTOL_BIT_POISTION);
internal::write_mxcsr(mxcsr);
return internal::exception_status_to_macro(old_excepts);
}
LIBC_INLINE int get_except() {
uint16_t mxcsr = static_cast<uint16_t>(internal::get_mxcsr());
uint16_t enabled_excepts = ~(mxcsr >> 7) & 0x3F;
return internal::exception_status_to_macro(enabled_excepts);
}
LIBC_INLINE int clear_except(int excepts) {
internal::X87StateDescriptor state;
internal::get_x87_state_descriptor(state);
state.status_word &=
static_cast<uint16_t>(~internal::get_status_value_for_except(excepts));
internal::write_x87_state_descriptor(state);
uint32_t mxcsr = internal::get_mxcsr();
mxcsr &= ~internal::get_status_value_for_except(excepts);
internal::write_mxcsr(mxcsr);
return 0;
}
LIBC_INLINE int test_except(int excepts) {
uint16_t status_word = internal::get_x87_status_word();
uint32_t mxcsr = internal::get_mxcsr();
// Check both x87 status word and MXCSR.
uint16_t status_value = internal::get_status_value_for_except(excepts);
return internal::exception_status_to_macro(
static_cast<uint16_t>(status_value & (status_word | mxcsr)));
}
// Sets the exception flags but does not trigger the exception handler.
LIBC_INLINE int set_except(int excepts) {
uint16_t status_value = internal::get_status_value_for_except(excepts);
internal::X87StateDescriptor state;
internal::get_x87_state_descriptor(state);
state.status_word |= status_value;
internal::write_x87_state_descriptor(state);
uint32_t mxcsr = internal::get_mxcsr();
mxcsr |= status_value;
internal::write_mxcsr(mxcsr);
#ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
x87::clear_except(x86_excepts);
#endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
return 0;
}
template <bool SKIP_X87_FPU = false> LIBC_INLINE int raise_except(int excepts) {
uint16_t status_value = internal::get_status_value_for_except(excepts);
LIBC_INLINE static int test_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
uint16_t tested_excepts = sse::test_except(x86_excepts);
// We set the status flag for exception one at a time and call the
// fwait instruction to actually get the processor to raise the
// exception by calling the exception handler. This scheme is per
// the description in "8.6 X87 FPU EXCEPTION SYNCHRONIZATION"
// of the "Intel 64 and IA-32 Architectures Software Developer's
// Manual, Vol 1".
#ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
tested_excepts |= x87::test_except(x86_excepts);
#endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
// FPU status word is read for each exception separately as the
// exception handler can potentially write to it (typically to clear
// the corresponding exception flag). By reading it separately, we
// ensure that the writes by the exception handler are maintained
// when raising the next exception.
return internal::get_macro_from_exception_status(tested_excepts);
}
auto raise_helper = [](uint16_t singleExceptFlag) {
if constexpr (!SKIP_X87_FPU) {
internal::X87StateDescriptor state;
internal::get_x87_state_descriptor(state);
state.status_word |= singleExceptFlag;
internal::write_x87_state_descriptor(state);
LIBC_INLINE static int get_except() {
uint16_t excepts = sse::get_except();
#ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
excepts |= x87::get_except();
#endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
return internal::get_macro_from_exception_status(excepts);
}
LIBC_INLINE static int set_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
sse::set_except(x86_excepts);
#ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
x87::set_except(x86_excepts);
#endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
return 0;
}
// We will only OR sse exception flags. Even though this might make x87 and
// sse exception flags not in sync, the results will be synchronized when
// reading with get_except or test_except.
LIBC_INLINE static int raise_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
sse::raise_except(x86_excepts);
return 0;
}
LIBC_INLINE static int enable_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
uint16_t old_excepts = sse::enable_except(x86_excepts);
#ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
old_excepts |= x87::enable_except(x86_excepts);
#endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
return internal::get_macro_from_exception_status(old_excepts);
}
LIBC_INLINE static int disable_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
uint16_t old_excepts = sse::disable_except(x86_excepts);
#ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
old_excepts |= x87::disable_except(x86_excepts);
#endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
return internal::get_macro_from_exception_status(old_excepts);
}
LIBC_INLINE static int get_round() {
uint16_t rounding_mode = sse::get_round();
return internal::get_macro_from_rounding_control(rounding_mode);
}
LIBC_INLINE static int set_round(int rounding_mode) {
uint16_t rounding = internal::get_rounding_control_from_macro(rounding_mode);
if (LIBC_UNLIKELY(rounding == internal::RoundingControl::ERROR))
return -1;
sse::set_round(rounding);
#ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
x87::set_round(rounding);
#endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
return 0;
}
LIBC_INLINE static int get_env(fenv_t *env) {
#ifndef LIBC_COMPILER_IS_MSVC
if constexpr (sizeof(fenv_t) >= sizeof(internal::X87StateDescriptor)) {
// The fenv_t is expected to have x87 floating point environment.
internal::X87StateDescriptor x87_state;
x87::get_x87_state_descriptor(x87_state);
uint32_t mxcsr = static_cast<uint32_t>(sse::get_mxcsr());
if constexpr (sizeof(fenv_t) == sizeof(internal::X87StateDescriptor)) {
// The fenv_t is expected to have only x87 floating point environment, so
// we merge sse data to x87 state.
internal::mxcsr_to_x87_state(static_cast<uint16_t>(mxcsr), x87_state);
// Copy the state data;
const char *x87_state_ptr = reinterpret_cast<const char *>(&x87_state);
char *fenv_ptr = reinterpret_cast<char *>(env);
cpp::inline_copy<sizeof(x87_state)>(x87_state_ptr, fenv_ptr);
} else {
// We expect to have at least extra 32-bit for mxcsr register in the
// fenv_t.
static_assert(
sizeof(sizeof(fenv_t) >=
sizeof(internal::X87StateDescriptor) + sizeof(uint32_t)));
const char *x87_state_ptr = reinterpret_cast<const char *>(&x87_state);
const char *mxcsr_ptr = reinterpret_cast<const char *>(&mxcsr);
char *fenv_ptr = reinterpret_cast<char *>(env);
cpp::inline_copy<sizeof(x87_state)>(x87_state_ptr, fenv_ptr);
cpp::inline_copy<sizeof(mxcsr)>(mxcsr_ptr, fenv_ptr + sizeof(x87_state));
}
} else
#endif // LIBC_COMPILER_IS_MSVC
if constexpr (sizeof(fenv_t) == 2 * sizeof(uint32_t)) {
// fenv_t has 2 * uint32_t to store mxcsr with control + status
// separately. We will just duplicate mxcsr on those two fields.
uint32_t mxcsr = static_cast<uint32_t>(sse::get_mxcsr());
const char *mxcsr_ptr = reinterpret_cast<const char *>(&mxcsr);
char *fenv_ptr = reinterpret_cast<char *>(env);
cpp::inline_copy<sizeof(mxcsr)>(mxcsr_ptr, fenv_ptr);
cpp::inline_copy<sizeof(mxcsr)>(mxcsr_ptr, fenv_ptr + sizeof(mxcsr));
} else {
// Just copy mxcsr over to fenv_t.
// Make sure fenv_t is big enough.
static_assert(sizeof(fenv_t) >= sizeof(uint32_t));
uint32_t mxcsr = static_cast<uint32_t>(sse::get_mxcsr());
const char *mxcsr_ptr = reinterpret_cast<const char *>(&mxcsr);
char *fenv_ptr = reinterpret_cast<char *>(env);
cpp::inline_copy<sizeof(mxcsr)>(mxcsr_ptr, fenv_ptr);
}
uint32_t mxcsr = 0;
mxcsr = internal::get_mxcsr();
mxcsr |= singleExceptFlag;
internal::write_mxcsr(mxcsr);
internal::fwait();
};
if (status_value & internal::ExceptionFlags::INVALID_F)
raise_helper(internal::ExceptionFlags::INVALID_F);
if (status_value & internal::ExceptionFlags::DIV_BY_ZERO_F)
raise_helper(internal::ExceptionFlags::DIV_BY_ZERO_F);
if (status_value & internal::ExceptionFlags::OVERFLOW_F)
raise_helper(internal::ExceptionFlags::OVERFLOW_F);
if (status_value & internal::ExceptionFlags::UNDERFLOW_F)
raise_helper(internal::ExceptionFlags::UNDERFLOW_F);
if (status_value & internal::ExceptionFlags::INEXACT_F)
raise_helper(internal::ExceptionFlags::INEXACT_F);
#ifdef __FE_DENORM
if (status_value & internal::ExceptionFlags::DENORMAL_F) {
raise_helper(internal::ExceptionFlags::DENORMAL_F);
}
#endif // __FE_DENORM
// There is no special synchronization scheme available to
// raise SEE exceptions. So, we will ignore that for now.
// Just plain writing to the MXCSR register does not guarantee
// the exception handler will be called.
return 0;
}
LIBC_INLINE int get_round() {
uint16_t bit_value =
(internal::get_mxcsr() >> internal::MXCSR_ROUNDING_CONTROL_BIT_POSITION) &
0x3;
switch (bit_value) {
case internal::RoundingControlValue::TO_NEAREST:
return FE_TONEAREST;
case internal::RoundingControlValue::DOWNWARD:
return FE_DOWNWARD;
case internal::RoundingControlValue::UPWARD:
return FE_UPWARD;
case internal::RoundingControlValue::TOWARD_ZERO:
return FE_TOWARDZERO;
default:
return -1; // Error value.
}
}
LIBC_INLINE int set_round(int mode) {
uint16_t bit_value;
switch (mode) {
case FE_TONEAREST:
bit_value = internal::RoundingControlValue::TO_NEAREST;
break;
case FE_DOWNWARD:
bit_value = internal::RoundingControlValue::DOWNWARD;
break;
case FE_UPWARD:
bit_value = internal::RoundingControlValue::UPWARD;
break;
case FE_TOWARDZERO:
bit_value = internal::RoundingControlValue::TOWARD_ZERO;
break;
default:
return 1; // To indicate failure
}
uint16_t x87_value = static_cast<uint16_t>(
bit_value << internal::X87_ROUNDING_CONTROL_BIT_POSITION);
uint16_t x87_control = internal::get_x87_control_word();
x87_control = static_cast<uint16_t>(
(x87_control &
~(uint16_t(0x3) << internal::X87_ROUNDING_CONTROL_BIT_POSITION)) |
x87_value);
internal::write_x87_control_word(x87_control);
uint32_t mxcsr_value = bit_value
<< internal::MXCSR_ROUNDING_CONTROL_BIT_POSITION;
uint32_t mxcsr_control = internal::get_mxcsr();
mxcsr_control = (mxcsr_control &
~(0x3 << internal::MXCSR_ROUNDING_CONTROL_BIT_POSITION)) |
mxcsr_value;
internal::write_mxcsr(mxcsr_control);
return 0;
}
namespace internal {
#if defined(_WIN32)
// MSVC fenv.h defines a very simple representation of the floating point state
// which just consists of control and status words of the x87 unit.
struct FPState {
uint32_t control_word;
uint32_t status_word;
};
#elif defined(__APPLE__)
struct FPState {
uint16_t control_word;
uint16_t status_word;
uint32_t mxcsr;
uint8_t reserved[8];
};
#else
struct FPState {
X87StateDescriptor x87_status;
uint32_t mxcsr;
};
#endif // _WIN32
} // namespace internal
static_assert(
sizeof(fenv_t) == sizeof(internal::FPState),
"Internal floating point state does not match the public fenv_t type.");
#ifdef _WIN32
// The exception flags in the Windows FEnv struct and the MXCSR have almost
// reversed bit positions.
struct WinExceptionFlags {
static constexpr uint32_t INEXACT_WIN = 0x01;
static constexpr uint32_t UNDERFLOW_WIN = 0x02;
static constexpr uint32_t OVERFLOW_WIN = 0x04;
static constexpr uint32_t DIV_BY_ZERO_WIN = 0x08;
static constexpr uint32_t INVALID_WIN = 0x10;
static constexpr uint32_t DENORMAL_WIN = 0x20;
// The Windows FEnv struct has a second copy of all of these bits in the high
// byte of the 32 bit control word. These are used as the source of truth when
// calling fesetenv.
static constexpr uint32_t HIGH_OFFSET = 24;
static constexpr uint32_t HIGH_INEXACT = INEXACT_WIN << HIGH_OFFSET;
static constexpr uint32_t HIGH_UNDERFLOW = UNDERFLOW_WIN << HIGH_OFFSET;
static constexpr uint32_t HIGH_OVERFLOW = OVERFLOW_WIN << HIGH_OFFSET;
static constexpr uint32_t HIGH_DIV_BY_ZERO = DIV_BY_ZERO_WIN << HIGH_OFFSET;
static constexpr uint32_t HIGH_INVALID = INVALID_WIN << HIGH_OFFSET;
static constexpr uint32_t HIGH_DENORMAL = DENORMAL_WIN << HIGH_OFFSET;
};
/*
fenv_t control word format:
Windows (at least for x64) uses a 4 byte control fenv control word stored in
a 32 bit integer. The first byte contains just the rounding mode and the
exception masks, while the last two bytes contain that same information as
well as the flush-to-zero and denormals-are-zero flags. The flags are
represented with a truth table:
00 - No flags set
01 - Flush-to-zero and Denormals-are-zero set
11 - Flush-to-zero set
10 - Denormals-are-zero set
U represents unused.
+-----Rounding Mode-----+
| |
++ ++
|| ||
RRMMMMMM UUUUUUUU UUUUFFRR UUMMMMMM
| | || | |
+----+ flags---++ +----+
| |
+------Exception Masks-----+
fenv_t status word format:
The status word is a lot simpler for this conversion, since only the
exception flags are used in the MXCSR.
+----+---Exception Flags---+----+
| | | |
UUEEEEEE UUUUUUUU UUUUUUUU UUEEEEEE
MXCSR Format:
The MXCSR format is the same information, just organized differently. Since
the fenv_t struct for windows doesn't include the mxcsr bits, they must be
generated from the control word bits.
Exception Masks---+ +---Exception Flags
| |
Flush-to-zero---+ +----+ +----+
| | | | |
FRRMMMMMMDEEEEEE
|| |
++ +---Denormals-are-zero
|
+---Rounding Mode
The mask and flag order is as follows:
fenv_t mxcsr
denormal inexact
invalid underflow
div by 0 overflow
overflow div by 0
underflow denormal
inexact invalid
This is almost reverse, except for denormal and invalid which are in the
same order in both.
*/
LIBC_INLINE int get_env(fenv_t *envp) {
internal::FPState *state = reinterpret_cast<internal::FPState *>(envp);
uint32_t status_word = 0;
uint32_t control_word = 0;
uint32_t mxcsr = internal::get_mxcsr();
// Set exception flags in the status word
status_word |= (mxcsr & (internal::ExceptionFlags::INVALID_F |
internal::ExceptionFlags::DENORMAL_F))
<< 4;
status_word |= (mxcsr & internal::ExceptionFlags::DIV_BY_ZERO_F) << 1;
status_word |= (mxcsr & internal::ExceptionFlags::OVERFLOW_F) >> 1;
status_word |= (mxcsr & internal::ExceptionFlags::UNDERFLOW_F) >> 3;
status_word |= (mxcsr & internal::ExceptionFlags::INEXACT_F) >> 5;
status_word |= status_word << WinExceptionFlags::HIGH_OFFSET;
// Set exception masks in bits 0-5 and 24-29
control_word |= (mxcsr & ((internal::ExceptionFlags::INVALID_F |
internal::ExceptionFlags::DENORMAL_F)
<< 7)) >>
3;
control_word |= (mxcsr & (internal::ExceptionFlags::DIV_BY_ZERO_F << 7)) >> 6;
control_word |= (mxcsr & (internal::ExceptionFlags::OVERFLOW_F << 7)) >> 8;
control_word |= (mxcsr & (internal::ExceptionFlags::UNDERFLOW_F << 7)) >> 10;
control_word |= (mxcsr & (internal::ExceptionFlags::INEXACT_F << 7)) >> 12;
control_word |= control_word << WinExceptionFlags::HIGH_OFFSET;
// Set rounding in bits 8-9 and 30-31
control_word |= (mxcsr & 0x6000) >> 5;
control_word |= (mxcsr & 0x6000) << 17;
// Set flush-to-zero in bit 10
control_word |= (mxcsr & 0x8000) >> 5;
// Set denormals-are-zero xor flush-to-zero in bit 11
control_word |= (((mxcsr & 0x8000) >> 9) ^ (mxcsr & 0x0040)) << 5;
state->control_word = control_word;
state->status_word = status_word;
return 0;
}
LIBC_INLINE int set_env(const fenv_t *envp) {
const internal::FPState *state =
reinterpret_cast<const internal::FPState *>(envp);
uint32_t mxcsr = 0;
// Set exception flags from the status word
mxcsr |= static_cast<uint16_t>(
(state->status_word &
(WinExceptionFlags::HIGH_DENORMAL | WinExceptionFlags::HIGH_INVALID)) >>
28);
mxcsr |= static_cast<uint16_t>(
(state->status_word & WinExceptionFlags::HIGH_DIV_BY_ZERO) >> 25);
mxcsr |= static_cast<uint16_t>(
(state->status_word & WinExceptionFlags::HIGH_OVERFLOW) >> 23);
mxcsr |= static_cast<uint16_t>(
(state->status_word & WinExceptionFlags::HIGH_UNDERFLOW) >> 21);
mxcsr |= static_cast<uint16_t>(
(state->status_word & WinExceptionFlags::HIGH_INEXACT) >> 19);
// Set denormals-are-zero from bit 10 xor bit 11
mxcsr |= static_cast<uint16_t>(
(((state->control_word & 0x800) >> 1) ^ (state->control_word & 0x400)) >>
4);
// Set exception masks from bits 24-29
mxcsr |= static_cast<uint16_t>(
(state->control_word &
(WinExceptionFlags::HIGH_DENORMAL | WinExceptionFlags::HIGH_INVALID)) >>
21);
mxcsr |= static_cast<uint16_t>(
(state->control_word & WinExceptionFlags::HIGH_DIV_BY_ZERO) >> 18);
mxcsr |= static_cast<uint16_t>(
(state->control_word & WinExceptionFlags::HIGH_OVERFLOW) >> 16);
mxcsr |= static_cast<uint16_t>(
(state->control_word & WinExceptionFlags::HIGH_UNDERFLOW) >> 14);
mxcsr |= static_cast<uint16_t>(
(state->control_word & WinExceptionFlags::HIGH_INEXACT) >> 12);
// Set rounding from bits 30-31
mxcsr |= static_cast<uint16_t>((state->control_word & 0xc0000000) >> 17);
// Set flush-to-zero from bit 10
mxcsr |= static_cast<uint16_t>((state->control_word & 0x400) << 5);
internal::write_mxcsr(mxcsr);
return 0;
}
#else
LIBC_INLINE int get_env(fenv_t *envp) {
internal::FPState *state = reinterpret_cast<internal::FPState *>(envp);
#ifdef __APPLE__
internal::X87StateDescriptor x87_status;
internal::get_x87_state_descriptor(x87_status);
state->control_word = x87_status.control_word;
state->status_word = x87_status.status_word;
#else
internal::get_x87_state_descriptor(state->x87_status);
#endif // __APPLE__
state->mxcsr = internal::get_mxcsr();
return 0;
}
LIBC_INLINE int set_env(const fenv_t *envp) {
// envp contains everything including pieces like the current
// top of FPU stack. We cannot arbitrarily change them. So, we first
// read the current status and update only those pieces which are
// not disruptive.
internal::X87StateDescriptor x87_status;
internal::get_x87_state_descriptor(x87_status);
if (envp == FE_DFL_ENV) {
// Reset the exception flags in the status word.
x87_status.status_word &= ~uint16_t(0x3F);
// Reset other non-sensitive parts of the status word.
for (int i = 0; i < 5; i++)
x87_status._[i] = 0;
// In the control word, we do the following:
// 1. Mask all exceptions
// 2. Set rounding mode to round-to-nearest
// 3. Set the internal precision to double extended precision.
x87_status.control_word |= uint16_t(0x3F); // Mask all exceptions.
x87_status.control_word &= ~(uint16_t(0x3) << 10); // Round to nearest.
x87_status.control_word |= (uint16_t(0x3) << 8); // Extended precision.
internal::write_x87_state_descriptor(x87_status);
// We take the exact same approach MXCSR register as well.
// MXCSR has two additional fields, "flush-to-zero" and
// "denormals-are-zero". We reset those bits. Also, MXCSR does not
// have a field which controls the precision of internal operations.
uint32_t mxcsr = internal::get_mxcsr();
mxcsr &= ~uint16_t(0x3F); // Clear exception flags.
mxcsr &= ~(uint16_t(0x1) << 6); // Reset denormals-are-zero
mxcsr |= (uint16_t(0x3F) << 7); // Mask exceptions
mxcsr &= ~(uint16_t(0x3) << 13); // Round to nearest.
mxcsr &= ~(uint16_t(0x1) << 15); // Reset flush-to-zero
internal::write_mxcsr(mxcsr);
LIBC_INLINE static int set_env(const fenv_t *env) {
if (env == FE_DFL_ENV) {
#ifndef LIBC_COMPILER_IS_MSVC
x87::initialize_x87_state();
#endif // LIBC_COMPILER_IS_MSVC
// Initial state of mxcsr:
// Round-to-nearest, all exceptions are masked, all exception flags are
// cleared.
sse::write_mxcsr(0x1f80);
return 0;
}
const internal::FPState *fpstate =
reinterpret_cast<const internal::FPState *>(envp);
#ifndef LIBC_COMPILER_IS_MSVC
if constexpr (sizeof(fenv_t) > sizeof(internal::X87StateDescriptor)) {
// We expect to have at least extra 32-bit for mxcsr register in the fenv_t.
static_assert(
sizeof(sizeof(fenv_t) >=
sizeof(internal::X87StateDescriptor) + sizeof(uint32_t)));
internal::X87StateDescriptor x87_state;
uint32_t mxcsr = 0;
// Copy the exception status flags from envp.
x87_status.status_word &= ~uint16_t(0x3F);
#ifdef __APPLE__
x87_status.status_word |= (fpstate->status_word & 0x3F);
// We can set the x87 control word as is as there no sensitive bits.
x87_status.control_word = fpstate->control_word;
#else
x87_status.status_word |= (fpstate->x87_status.status_word & 0x3F);
// Copy other non-sensitive parts of the status word.
for (int i = 0; i < 5; i++)
x87_status._[i] = fpstate->x87_status._[i];
// We can set the x87 control word as is as there no sensitive bits.
x87_status.control_word = fpstate->x87_status.control_word;
#endif // __APPLE__
internal::write_x87_state_descriptor(x87_status);
char *x87_state_ptr = reinterpret_cast<char *>(&x87_state);
char *mxcsr_ptr = reinterpret_cast<char *>(&mxcsr);
const char *fenv_ptr = reinterpret_cast<const char *>(env);
cpp::inline_copy<sizeof(x87_state)>(fenv_ptr, x87_state_ptr);
cpp::inline_copy<sizeof(mxcsr)>(fenv_ptr + sizeof(x87_state), mxcsr_ptr);
x87::write_x87_state_descriptor(x87_state);
sse::write_mxcsr(mxcsr);
} else if constexpr (sizeof(fenv_t) == sizeof(internal::X87StateDescriptor)) {
const internal::X87StateDescriptor *x87_state_ptr =
reinterpret_cast<const internal::X87StateDescriptor *>(env);
uint32_t mxcsr = internal::x87_state_to_mxcsr(*x87_state_ptr);
x87::write_x87_state_descriptor(*x87_state_ptr);
sse::write_mxcsr(mxcsr);
} else
#endif // LIBC_COMPILER_IS_MSVC
if constexpr (sizeof(fenv_t) == 2 * sizeof(uint32_t)) {
// fenv_t has 2 * uint32_t to store mxcsr with control + status
// separately. We will just merge mxcsr on those two fields.
uint32_t mxcsr = 0, mxcsr_hi = 0;
char *mxcsr_ptr = reinterpret_cast<char *>(&mxcsr);
char *mxcsr_hi_ptr = reinterpret_cast<char *>(&mxcsr_hi);
const char *fenv_ptr = reinterpret_cast<const char *>(env);
cpp::inline_copy<sizeof(mxcsr)>(fenv_ptr, mxcsr_ptr);
cpp::inline_copy<sizeof(mxcsr_hi)>(fenv_ptr + sizeof(mxcsr),
mxcsr_hi_ptr);
sse::write_mxcsr(mxcsr | mxcsr_hi);
} else {
// Just copy mxcsr over to fenv_t.
// Make sure fenv_t is big enough.
static_assert(sizeof(fenv_t) >= sizeof(uint32_t));
uint32_t mxcsr = 0;
char *mxcsr_ptr = reinterpret_cast<char *>(&mxcsr);
const char *fenv_ptr = reinterpret_cast<const char *>(env);
cpp::inline_copy<sizeof(mxcsr)>(fenv_ptr, mxcsr_ptr);
sse::write_mxcsr(mxcsr);
}
// We can write the MXCSR state as is as there are no sensitive bits.
internal::write_mxcsr(fpstate->mxcsr);
return 0;
}
#endif
} // namespace fputil
} // namespace LIBC_NAMESPACE_DECL
#endif // __SSE__
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENVIMPL_H

View File

@@ -0,0 +1,166 @@
//===-- sse2 floating point env manipulation utilities ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_MXCSR_UTILS_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_MXCSR_UTILS_H
#include "hdr/stdint_proxy.h"
#include "hdr/types/fenv_t.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/FPUtil/x86_64/fenv_x86_common.h"
#include "src/__support/macros/attributes.h" // LIBC_INLINE
#include "src/__support/macros/config.h"
#include "src/__support/macros/properties/architectures.h"
#include "src/__support/macros/properties/compiler.h"
#include "src/__support/macros/sanitizer.h"
#include <immintrin.h>
namespace LIBC_NAMESPACE_DECL {
namespace fputil {
namespace sse {
using internal::ExceptionFlags;
using internal::RoundingControl;
// SSE FPU environment from Intel 64 and IA-32 Architectures Software Developer
// Manuals - Chapter 10
// https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
//
// The SSE floating point environment will be save/load with LDMXCSR/STMXCSR
// instructions, which will return the following 4-byte structure in 32-bit
// mode (see section 10.2.3, figure 10-3 in the manual linked above).
// SSE MXCSR register (32-bit) structure: (section 10.2.3 in the manual)
// - Bit 0: Invalid Exception
// - Bit 1: Denormal Exception
// - Bit 2: Division-by-zero Exception
// - Bit 3: Overflow Exception
// - Bit 4: Underflow Exception
// - Bit 5: Inexact Exception
// - Bit 6: Denormal Are Zeros (DAZ)
// - Bit 7: Invalid Exception Mask
// - Bit 8: Denormal Exception Mask
// - Bit 9: Division-by-zero Exception Mask
// - Bit 10: Overflow Exception Mask
// - Bit 11: Underflow Exception Mask
// - Bit 12: Inexact Exception Mask
// - Bit 13-14: Rounding Control
// - Bit 15: Flush Denormal To Zero (FTZ)
// - Bit 16-31: Reserved, will raise general-protection exception if set to
// non-zero.
LIBC_INLINE static uint32_t get_mxcsr() { return _mm_getcsr(); }
LIBC_INLINE static void write_mxcsr(uint32_t w) { _mm_setcsr(w); }
LIBC_INLINE static void clear_except(uint16_t excepts) {
uint32_t mxcsr = _MM_GET_EXCEPTION_STATE();
mxcsr &= ~static_cast<uint32_t>(excepts);
_MM_SET_EXCEPTION_STATE(mxcsr);
}
LIBC_INLINE static uint16_t test_except(uint16_t excepts) {
uint32_t mxcsr = get_mxcsr();
return static_cast<uint16_t>(excepts & mxcsr);
}
LIBC_INLINE static uint16_t get_except() {
uint32_t mxcsr = ~get_mxcsr();
return static_cast<uint16_t>(
(mxcsr >> ExceptionFlags::MXCSR_EXCEPTION_MASK_BIT_POSITION) &
ExceptionFlags::ALL_F);
}
LIBC_INLINE static void set_except(uint16_t excepts) {
_MM_SET_EXCEPTION_STATE(excepts);
}
LIBC_INLINE static void raise_except(uint16_t excepts) {
uint32_t mxcsr = _MM_GET_EXCEPTION_STATE();
mxcsr |= excepts;
_MM_SET_EXCEPTION_STATE(mxcsr);
#ifdef LIBC_TRAP_ON_RAISE_FP_EXCEPT
// We will try to trigger the SIGFPE if floating point exceptions are not
// masked. Since we already set all the floating point exception flags, we
// only need to trigger the trap on one of them.
static constexpr float EXCEPTION_INPUTS[6][2] = {
// FE_INVALID: 0.0 * inf
{0.0f, cpp::bit_cast<float>(0x7f80'0000U)},
// FE_DENORM: 1.0 * 0x1.0p-128
{1.0f, 0x1.0p-128f},
// FE_DIVBYZERO: 1.0 / 0.0
{1.0f, 0.0f},
// FE_OVERFLOW: 0x1.0p127 * 0x1.0p127
{0x1.0p127f, 0x1.0p127f},
// FE_UNDERFLOW: 0x1.0p-126 * 0x1.0p-126
{0x1.0p-126f, 0x1.0p-126f},
// FE_INEXACT: (1 + 2^-12) * (1 + 2^-12)
{0x1.001p0f, 0x1.001p0f}};
uint32_t except_masks =
(~(get_mxcsr() >> ExceptionFlags::MXCSR_EXCEPTION_MASK_BIT_POSITION)) &
excepts;
if (except_masks) {
int idx = cpp::countr_zero(except_masks);
if (idx == 2) {
// FE_DIVBYZERO, we need floating point division operations.
[[maybe_unused]] volatile float z = EXCEPTION_INPUTS[idx][0];
z /= EXCEPTION_INPUTS[idx][1];
} else {
// For the remaining exceptions, we use floating point multiplications.
[[maybe_unused]] volatile float z = EXCEPTION_INPUTS[idx][0];
z *= EXCEPTION_INPUTS[idx][1];
}
}
#endif // LIBC_TRAP_ON_RAISE_FP_EXCEPT
}
LIBC_INLINE static uint16_t enable_except(uint16_t excepts) {
uint32_t mxcsr = get_mxcsr();
uint16_t old_excepts =
(mxcsr >> ExceptionFlags::MXCSR_EXCEPTION_MASK_BIT_POSITION) &
ExceptionFlags::ALL_F;
mxcsr &= ~(static_cast<uint32_t>(excepts)
<< ExceptionFlags::MXCSR_EXCEPTION_MASK_BIT_POSITION);
write_mxcsr(mxcsr);
return old_excepts;
}
LIBC_INLINE static uint16_t disable_except(uint16_t excepts) {
uint32_t mxcsr = get_mxcsr();
uint16_t old_excepts =
(mxcsr >> ExceptionFlags::MXCSR_EXCEPTION_MASK_BIT_POSITION) &
ExceptionFlags::ALL_F;
mxcsr |= (static_cast<uint32_t>(excepts)
<< ExceptionFlags::MXCSR_EXCEPTION_MASK_BIT_POSITION);
write_mxcsr(mxcsr);
return old_excepts;
}
LIBC_INLINE static uint16_t get_round() {
uint32_t mxcsr = get_mxcsr();
return static_cast<uint16_t>(mxcsr >> RoundingControl::MXCSR_BIT_POSITION) &
RoundingControl::ROUNDING_MASK;
}
LIBC_INLINE static void set_round(uint16_t rounding_mode) {
uint32_t mxcsr = get_mxcsr();
rounding_mode <<= RoundingControl::MXCSR_BIT_POSITION;
// Clear rounding bits.
mxcsr &= (~RoundingControl::MXCSR_ROUNDING_MASK);
write_mxcsr(mxcsr | rounding_mode);
}
} // namespace sse
} // namespace fputil
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_MXCSR_UTILS_H

View File

@@ -0,0 +1,259 @@
//===-- x87 floating point env manipulation functions -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X86_COMMON_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X86_COMMON_H
#include <stdbool.h>
#include "hdr/stdint_proxy.h"
#include "hdr/types/fenv_t.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/properties/architectures.h"
#include "src/__support/macros/properties/compiler.h"
#include "src/__support/macros/properties/cpu_features.h"
namespace LIBC_NAMESPACE_DECL {
namespace fputil {
namespace internal {
// Default order of floating point exception flags in x87 and mxcsr registers:
// - Bit 0: Invalid Operations
// - Bit 1: Denormal
// - Bit 2: Divide-by-zero
// - Bit 3: Overflow
// - Bit 4: Underflow
// - Bit 5: Inexact
struct ExceptionFlags {
static constexpr uint16_t INVALID_F = 0x1;
// Some libcs define __FE_DENORM corresponding to the denormal input
// exception and include it in FE_ALL_EXCEPTS. We define and use it to
// support compiling against headers provided by such libcs.
static constexpr uint16_t DENORMAL_F = 0x2;
static constexpr uint16_t DIV_BY_ZERO_F = 0x4;
static constexpr uint16_t OVERFLOW_F = 0x8;
static constexpr uint16_t UNDERFLOW_F = 0x10;
static constexpr uint16_t INEXACT_F = 0x20;
static constexpr uint16_t ALL_F =
static_cast<uint16_t>(INVALID_F | DENORMAL_F | DIV_BY_ZERO_F |
OVERFLOW_F | UNDERFLOW_F | INEXACT_F);
static constexpr unsigned MXCSR_EXCEPTION_MASK_BIT_POSITION = 7;
};
LIBC_INLINE static constexpr bool fenv_exceptions_match_x86() {
return (FE_INVALID == ExceptionFlags::INVALID_F) &&
#ifdef __FE_DENORM
(__FE_DENORM == ExceptionFlags::DENORMAL_F) &&
#elif defined(FE_DENORM)
(FE_DENORM == ExceptionFlags::DENORMAL_F) &&
#endif // __FE_DENORM
(FE_DIVBYZERO == ExceptionFlags::DIV_BY_ZERO_F) &&
(FE_OVERFLOW == ExceptionFlags::OVERFLOW_F) &&
(FE_UNDERFLOW == ExceptionFlags::UNDERFLOW_F) &&
(FE_INEXACT == ExceptionFlags::INEXACT_F);
}
// The rounding control values in the x87 control register and the MXCSR
// register have the same 2-bit enoding but have different bit positions.
// See below for the bit positions.
struct RoundingControl {
static constexpr uint16_t TO_NEAREST = 0x0;
static constexpr uint16_t DOWNWARD = 0x1;
static constexpr uint16_t UPWARD = 0x2;
static constexpr uint16_t TOWARD_ZERO = 0x3;
static constexpr uint16_t ROUNDING_MASK = 0x3;
static constexpr unsigned X87_BIT_POSITION = 10;
static constexpr unsigned MXCSR_BIT_POSITION = 13;
static constexpr uint16_t X87_ROUNDING_MASK = ROUNDING_MASK
<< X87_BIT_POSITION;
static constexpr uint16_t MXCSR_ROUNDING_MASK = ROUNDING_MASK
<< MXCSR_BIT_POSITION;
static constexpr uint16_t ERROR = 0xFFFF;
};
// Exception flags are individual bits in the corresponding registers.
// So, we just OR the bit values to get the full set of exceptions.
LIBC_INLINE static uint16_t get_status_value_from_except(int excepts) {
if constexpr (fenv_exceptions_match_x86()) {
return static_cast<uint16_t>(excepts & ExceptionFlags::ALL_F);
} else {
// We will make use of the fact that exception control bits are single
// bit flags in the control registers.
return ((excepts & FE_INVALID) ? ExceptionFlags::INVALID_F : 0) |
#ifdef __FE_DENORM
((excepts & __FE_DENORM) ? ExceptionFlags::DENORMAL_F : 0) |
#elif defined(FE_DENORM)
((excepts & FE_DENORM) ? ExceptionFlags::DENORMAL_F : 0) |
#endif // __FE_DENORM
((excepts & FE_DIVBYZERO) ? ExceptionFlags::DIV_BY_ZERO_F : 0) |
((excepts & FE_OVERFLOW) ? ExceptionFlags::OVERFLOW_F : 0) |
((excepts & FE_UNDERFLOW) ? ExceptionFlags::UNDERFLOW_F : 0) |
((excepts & FE_INEXACT) ? ExceptionFlags::INEXACT_F : 0);
}
}
LIBC_INLINE static int get_macro_from_exception_status(uint16_t status) {
if constexpr (fenv_exceptions_match_x86()) {
return status & ExceptionFlags::ALL_F;
} else {
return ((status & ExceptionFlags::INVALID_F) ? FE_INVALID : 0) |
#ifdef __FE_DENORM
((status & ExceptionFlags::DENORMAL_F) ? __FE_DENORM : 0) |
#elif defined(FE_DENORM)
((status & ExceptionFlags::DENORMAL_F) ? FE_DENORM : 0) |
#endif // __FE_DENORM
((status & ExceptionFlags::DIV_BY_ZERO_F) ? FE_DIVBYZERO : 0) |
((status & ExceptionFlags::OVERFLOW_F) ? FE_OVERFLOW : 0) |
((status & ExceptionFlags::UNDERFLOW_F) ? FE_UNDERFLOW : 0) |
((status & ExceptionFlags::INEXACT_F) ? FE_INEXACT : 0);
}
}
LIBC_INLINE static uint16_t get_rounding_control_from_macro(int rounding) {
switch (rounding) {
case FE_TONEAREST:
return RoundingControl::TO_NEAREST;
case FE_DOWNWARD:
return RoundingControl::DOWNWARD;
case FE_UPWARD:
return RoundingControl::UPWARD;
case FE_TOWARDZERO:
return RoundingControl::TOWARD_ZERO;
default:
return RoundingControl::ERROR;
}
}
LIBC_INLINE static int get_macro_from_rounding_control(uint16_t rounding) {
switch (rounding) {
case RoundingControl::TO_NEAREST:
return FE_TONEAREST;
case RoundingControl::DOWNWARD:
return FE_DOWNWARD;
case RoundingControl::UPWARD:
return FE_UPWARD;
case RoundingControl::TOWARD_ZERO:
return FE_TOWARDZERO;
default:
return -1;
}
}
// x87 FPU environment from Intel 64 and IA-32 Architectures Software Developer
// Manuals - Chapter 8
// https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
//
// The x87 floating point environment will be save/load with FNSTENV/FLDENV
// instructions, which will return the following 28-byte structure in 32-bit
// mode (see section 8.1.10, figures 8-9 and 8-10 in the manual linked above),
// in which we only use the control and status words.
// x87 control word (16-bit) structure: (section 8.1.5 in the manual)
// - Bit 0: Invalid Exception Mask
// - Bit 1: Denormal Exception Mask
// - Bit 2: Division-by-zero Exception Mask
// - Bit 3: Overflow Exception Mask
// - Bit 4: Underflow Exception Mask
// - Bit 5: Inexact Exception Mask
// - Bit 6-7: Reserved
// - Bit 8-9: Precision Control
// 00 - Single Precision
// 01 - Reserved
// 10 - Double Precision
// 11 - Double Extended Precision (default)
// - Bit 10-11: Rounding Control
// 00 - Round to nearest, tie to even
// 01 - Round down (toward -inf)
// 10 - Round up (toward +inf)
// 11 - Round toward zero (truncate)
// - Bit 13-15: Reserved
// x87 status word (16-bit) structure: (section 8.1.3 in the manual)
// - Bit 0: Invalid Exception
// - Bit 1: Denormal Exception
// - Bit 2: Division-by-zero Exception
// - Bit 3: Overflow Exception
// - Bit 4: Underflow Exception
// - Bit 5: Inexact Exception
// - Bit 6: Stack Fault
// - Bit 7 Exception Summary Status
// - Bit 8-10: Condition Code
// - Bit 11-13: Top-of-stack Pointer
// - Bit 14: Condition Code
// - Bit 15: FPU Busy Flag
struct X87StateDescriptor {
uint16_t control_word;
uint16_t unused1;
uint16_t status_word;
uint16_t unused2;
uint32_t _[5];
};
// Putting x87 state descriptor to mxcsr.
// SSE MXCSR register (32-bit) structure: (section 10.2.3 in the manual)
// - Bit 0: Invalid Exception
// - Bit 1: Denormal Exception
// - Bit 2: Division-by-zero Exception
// - Bit 3: Overflow Exception
// - Bit 4: Underflow Exception
// - Bit 5: Inexact Exception
// - Bit 6: Denormal Are Zeros (DAZ)
// - Bit 7: Invalid Exception Mask
// - Bit 8: Denormal Exception Mask
// - Bit 9: Division-by-zero Exception Mask
// - Bit 10: Overflow Exception Mask
// - Bit 11: Underflow Exception Mask
// - Bit 12: Inexact Exception Mask
// - Bit 13-14: Rounding Control
// - Bit 15: Flush Denormal To Zero (FTZ)
// - Bit 16-31: Reserved, will raise general-protection exception if set to
// non-zero.
// For all of the following exception functions, we assume the excepts are
// normalized according to x86 and mxcsr exceptions defined in
// fenv_x86_common.h: ExceptionFlags.
LIBC_INLINE static uint16_t x87_state_to_mxcsr(const X87StateDescriptor &s) {
uint16_t mxcsr = 0;
// Copy 6 exception flags from status word.
mxcsr = s.status_word & ExceptionFlags::ALL_F;
// Copy 6 exception masks from control word.
mxcsr |= (s.control_word & ExceptionFlags::ALL_F)
<< ExceptionFlags::MXCSR_EXCEPTION_MASK_BIT_POSITION;
// Copy 2-bit rounding control.
mxcsr |= (s.control_word & RoundingControl::X87_ROUNDING_MASK)
<< (RoundingControl::MXCSR_BIT_POSITION -
RoundingControl::X87_BIT_POSITION);
return mxcsr;
}
LIBC_INLINE static void mxcsr_to_x87_state(uint16_t mxcsr,
X87StateDescriptor &s) {
// Clear exception mask and rounding control.
s.control_word &=
~(ExceptionFlags::ALL_F | RoundingControl::X87_ROUNDING_MASK);
// Copy 6 exception masks.
s.control_word |=
(mxcsr >> ExceptionFlags::MXCSR_EXCEPTION_MASK_BIT_POSITION) &
ExceptionFlags::ALL_F;
// Copy rounding control.
s.control_word |=
(mxcsr & RoundingControl::MXCSR_ROUNDING_MASK) >>
(RoundingControl::MXCSR_BIT_POSITION - RoundingControl::X87_BIT_POSITION);
// Clear exception flags
s.status_word &= ~ExceptionFlags::ALL_F;
// Copy 6 exception status flags.
s.status_word |= mxcsr & ExceptionFlags::ALL_F;
}
} // namespace internal
} // namespace fputil
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X86_COMMON_H

View File

@@ -0,0 +1,137 @@
//===-- x87 floating point env manipulation functions -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X87_ONLY_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X87_ONLY_H
#include "hdr/stdint_proxy.h"
#include "hdr/types/fenv_t.h"
#include "src/__support/CPP/bit.h"
#include "src/__support/FPUtil/x86_64/fenv_x87_utils.h"
#include "src/__support/macros/attributes.h" // LIBC_INLINE
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h"
#include "src/__support/macros/properties/architectures.h"
#include "src/__support/macros/properties/compiler.h"
#include "src/__support/macros/sanitizer.h"
namespace LIBC_NAMESPACE_DECL {
namespace fputil {
using internal::ExceptionFlags;
using internal::RoundingControl;
// Implementing fenv.h functions when only x87 are available.
LIBC_INLINE static int clear_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
x87::clear_except(x86_excepts);
return 0;
}
LIBC_INLINE static int test_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
uint16_t tested_excepts = x87::test_except(x86_excepts);
return internal::get_macro_from_exception_status(tested_excepts);
}
LIBC_INLINE static int get_except() {
uint16_t excepts = x87::get_except();
return internal::get_macro_from_exception_status(excepts);
}
LIBC_INLINE static int set_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
x87::set_except(x86_excepts);
return 0;
}
LIBC_INLINE static int raise_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
x87::raise_except(x86_excepts);
return 0;
}
LIBC_INLINE static int enable_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
uint16_t old_excepts = x87::enable_except(x86_excepts);
return internal::get_macro_from_exception_status(old_excepts);
}
LIBC_INLINE static int disable_except(int excepts) {
uint16_t x86_excepts = internal::get_status_value_from_except(excepts);
uint16_t old_excepts = x87::disable_except(x86_excepts);
return internal::get_macro_from_exception_status(old_excepts);
}
LIBC_INLINE static int get_round() {
uint16_t rounding_mode = x87::get_round();
return internal::get_macro_from_rounding_control(rounding_mode);
}
LIBC_INLINE static int set_round(int rounding_mode) {
uint16_t rounding = internal::get_rounding_control_from_macro(rounding_mode);
if (LIBC_UNLIKELY(rounding == internal::RoundingControl::ERROR))
return -1;
x87::set_round(rounding);
return 0;
}
LIBC_INLINE static void get_env(fenv_t *env) {
internal::X87StateDescriptor x87_state;
x87::get_x87_state_descriptor(x87_state);
if constexpr (sizeof(fenv_t) >= sizeof(internal::X87StateDescriptor)) {
// When fenv_t is 28 bytes or more, we assume that the structure is simply
// store the entire x87 fenv state descriptor (28 bytes) at the beginning of
// the struct.
cpp::bit_copy(x87_state, *env);
} else {
// When fenv_t is less than 28 bytes, we will assume that it is following
// mxcsr structure, so we simply put x87 state descriptor to the first
// 16-bit following mxcsr.
uint16_t mxcsr = internal::x87_state_to_mxcsr(x87_state);
const char *mxcsr_ptr = reinterpret_cast<const char *>(&mxcsr);
char *env_ptr = reinterpret_cast<char *>(env);
cpp::inline_copy<sizeof(uint16_t)>(mxcsr_ptr, env_ptr);
}
}
LIBC_INLINE static int set_env(const fenv_t *env) {
if (env == FE_DFL_ENV) {
x87::initialize_x87_state();
return 0;
}
internal::X87StateDescriptor x87_state;
const char *fenv_ptr = reinterpret_cast<const char *>(env);
if constexpr (sizeof(fenv_t) >= sizeof(internal::X87StateDescriptor)) {
// When fenv_t is 28 bytes or more, we assume that the structure is simply
// store the entire x87 fenv state descriptor (28 bytes) at the beginning of
// the struct.
char *x87_state_ptr = reinterpret_cast<char *>(&x87_state);
cpp::inline_copy<sizeof(x87_state)>(fenv_ptr, x87_state_ptr);
} else {
// When fenv_t is less than 28 bytes, we will assume that it is following
// mxcsr structure, so we simply put x87 state descriptor to the first
// 16-bit following mxcsr.
uint16_t mxcsr = 0;
static_assert(sizeof(fenv_t) >= sizeof(mxcsr));
cpp::inline_copy<sizeof(mxcsr)>(fenv_ptr, reinterpret_cast<char *>(&mxcsr));
// We then load the current x87 state descriptor, then replace all
// relevant bits with mxcsr data before writing them back.
x87::get_x87_state_descriptor(x87_state);
internal::mxcsr_to_x87_state(mxcsr, x87_state);
}
x87::write_x87_state_descriptor(x87_state);
return 0;
}
} // namespace fputil
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X87_ONLY_H

View File

@@ -0,0 +1,194 @@
//===-- x87 floating point env manipulation utilities -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X87_UTILS_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X87_UTILS_H
#include "hdr/stdint_proxy.h"
#include "hdr/types/fenv_t.h"
#include "src/__support/FPUtil/x86_64/fenv_x86_common.h"
#include "src/__support/macros/attributes.h" // LIBC_INLINE
#include "src/__support/macros/config.h"
#include "src/__support/macros/properties/architectures.h"
#include "src/__support/macros/properties/compiler.h"
#include "src/__support/macros/sanitizer.h"
namespace LIBC_NAMESPACE_DECL {
namespace fputil {
namespace x87 {
using internal::ExceptionFlags;
using internal::RoundingControl;
using internal::X87StateDescriptor;
LIBC_INLINE static uint16_t get_x87_control_word() {
uint16_t w;
#ifdef LIBC_COMPILER_IS_MSVC
__asm fstcw w;
#else // !LIBC_COMPILER_IS_MSVC
asm volatile("fnstcw %0" : "=m"(w)::);
MSAN_UNPOISON(&w, sizeof(w));
#endif // LIBC_COMPILER_IS_MSVC
return w;
}
LIBC_INLINE static void write_x87_control_word(uint16_t w) {
#ifdef LIBC_COMPILER_IS_MSVC
__asm fldcw w;
#else // !LIBC_COMPILER_IS_MSVC
asm volatile("fldcw %0" : : "m"(w) :);
#endif // LIBC_COMPILER_IS_MSVC
}
LIBC_INLINE static uint16_t get_x87_status_word() {
uint16_t w;
#ifdef LIBC_COMPILER_IS_MSVC
__asm fnstsw w;
#else // !LIBC_COMPILER_IS_MSVC
asm volatile("fnstsw %0" : "=m"(w)::);
MSAN_UNPOISON(&w, sizeof(w));
#endif // LIBC_COMPILER_IS_MSVC
return w;
}
LIBC_INLINE static void clear_x87_exceptions() {
#ifdef LIBC_COMPILER_IS_MSVC
__asm fnclex;
#else // !LIBC_COMPILER_IS_MSVC
asm volatile("fnclex" : : :);
#endif // LIBC_COMPILER_IS_MSVC
}
LIBC_INLINE static void get_x87_state_descriptor(X87StateDescriptor &s) {
#ifdef LIBC_COMPILER_IS_MSVC
__asm fnstenv s;
#else // !LIBC_COMPILER_IS_MSVC
asm volatile("fnstenv %0" : "=m"(s));
MSAN_UNPOISON(&s, sizeof(s));
#endif // LIBC_COMPILER_IS_MSVC
}
LIBC_INLINE static void
write_x87_state_descriptor(const X87StateDescriptor &s) {
#ifdef LIBC_COMPILER_IS_MSVC
__asm fldenv s;
#else // !LIBC_COMPILER_IS_MSVC
asm volatile("fldenv %0" : : "m"(s) :);
#endif // LIBC_COMPILER_IS_MSVC
}
LIBC_INLINE static void initialize_x87_state() {
#ifdef LIBC_COMPILER_IS_MSVC
__asm fninit;
#else // !LIBC_COMPILER_IS_MSVC
asm volatile("fninit" : : :);
#endif // LIBC_COMPILER_IS_MSVC
}
LIBC_INLINE static void clear_except(uint16_t excepts) {
if (excepts == ExceptionFlags::ALL_F) {
clear_x87_exceptions();
return;
}
X87StateDescriptor x87_descriptor;
get_x87_state_descriptor(x87_descriptor);
x87_descriptor.status_word &= static_cast<uint16_t>(~excepts);
write_x87_state_descriptor(x87_descriptor);
}
LIBC_INLINE static uint16_t test_except(uint16_t excepts) {
uint16_t x87_status = get_x87_status_word();
return static_cast<uint16_t>(x87_status & excepts);
}
LIBC_INLINE static uint16_t get_except() {
uint16_t x87_control = get_x87_control_word();
return static_cast<uint16_t>((~x87_control) & ExceptionFlags::ALL_F);
}
LIBC_INLINE static void set_except(uint16_t excepts) {
X87StateDescriptor x87_descriptor;
get_x87_state_descriptor(x87_descriptor);
uint16_t current_excepts =
static_cast<uint16_t>(x87_descriptor.status_word & ExceptionFlags::ALL_F);
// Do nothing if excepts are unchanged.
if (current_excepts == excepts)
return;
// Clear excepts.
x87_descriptor.status_word &= static_cast<uint16_t>(~ExceptionFlags::ALL_F);
// Set excepts.
x87_descriptor.status_word |= excepts;
write_x87_state_descriptor(x87_descriptor);
}
LIBC_INLINE static void raise_except(uint16_t excepts) {
X87StateDescriptor x87_descriptor;
get_x87_state_descriptor(x87_descriptor);
uint16_t current_excepts =
static_cast<uint16_t>(x87_descriptor.status_word & ExceptionFlags::ALL_F);
// Do nothing if excepts are unchanged.
if ((current_excepts | excepts) == current_excepts)
return;
// Update excepts.
x87_descriptor.status_word |= excepts;
write_x87_state_descriptor(x87_descriptor);
}
LIBC_INLINE static uint16_t enable_except(uint16_t excepts) {
uint16_t x87_control = get_x87_control_word();
uint16_t old_excepts =
static_cast<uint16_t>(~x87_control & ExceptionFlags::ALL_F);
// Only update if excepts are not enabled.
if ((excepts | old_excepts) != old_excepts) {
x87_control &= static_cast<uint16_t>(~excepts);
write_x87_control_word(x87_control);
}
return old_excepts;
}
LIBC_INLINE static uint16_t disable_except(uint16_t excepts) {
uint16_t x87_control = get_x87_control_word();
uint16_t old_excepts =
static_cast<uint16_t>(~x87_control & ExceptionFlags::ALL_F);
// Only update excepts if some of the excepts are enabled.
if ((x87_control | excepts) != x87_control) {
x87_control |= excepts;
write_x87_control_word(x87_control);
}
return old_excepts;
}
LIBC_INLINE static uint16_t get_round() {
uint16_t x87_control = get_x87_control_word();
return static_cast<uint16_t>(
(x87_control >> RoundingControl::X87_BIT_POSITION) &
RoundingControl::ROUNDING_MASK);
}
LIBC_INLINE static void set_round(uint16_t rounding_mode) {
uint16_t x87_control = get_x87_control_word();
rounding_mode <<= RoundingControl::X87_BIT_POSITION;
uint16_t x87_control_new =
(x87_control & (~RoundingControl::X87_ROUNDING_MASK)) | rounding_mode;
// Only update if rounding mode changes.
if (x87_control_new != x87_control)
write_x87_control_word(x87_control_new);
}
} // namespace x87
} // namespace fputil
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_FENV_X87_UTILS_H

View File

@@ -38,6 +38,11 @@
#define LIBC_COMPILER_IS_MSVC
// https://learn.microsoft.com/en-us/cpp/preprocessor/predefined-macros
#define LIBC_COMPILER_MSVC_VER (_MSC_VER)
#ifdef(_M_X64)
#define LIBC_COMPILER_IS_MSVC_X64
#else
#define LIBC_COMPILER_IS_MSVC_X86
#endif
#endif
#endif // LLVM_LIBC_SRC___SUPPORT_MACROS_PROPERTIES_COMPILER_H

View File

@@ -52,26 +52,50 @@ void FEnvSafeTest::expect_fenv_eq(const fenv_t &before_fenv,
EXPECT_EQ(before_state.ControlWord, after_state.ControlWord);
EXPECT_EQ(before_state.StatusWord, after_state.StatusWord);
#elif defined(LIBC_TARGET_ARCH_IS_X86) && !defined(__APPLE__) && \
!defined(LIBC_COMPILER_IS_MSVC)
using LIBC_NAMESPACE::fputil::internal::FPState;
const FPState &before_state = reinterpret_cast<const FPState &>(before_fenv);
const FPState &after_state = reinterpret_cast<const FPState &>(after_fenv);
#elif defined(LIBC_TARGET_ARCH_IS_X86)
using LIBC_NAMESPACE::cpp::inline_copy;
using LIBC_NAMESPACE::fputil::internal::X87StateDescriptor;
if constexpr (sizeof(fenv_t) >=
sizeof(X87StateDescriptor) + sizeof(uint32_t)) {
const char *before_fenv_ptr = reinterpret_cast<const char *>(&before_fenv);
const char *after_fenv_ptr = reinterpret_cast<const char *>(&after_fenv);
X87StateDescriptor before_x87_state, after_x87_state;
uint32_t before_mxcsr, after_mxcsr;
inline_copy<sizeof(X87StateDescriptor)>(
before_fenv_ptr, reinterpret_cast<char *>(&before_x87_state));
inline_copy<sizeof(X87StateDescriptor)>(
after_fenv_ptr, reinterpret_cast<char *>(&after_x87_state));
inline_copy<sizeof(uint32_t)>(before_fenv_ptr + sizeof(X87StateDescriptor),
reinterpret_cast<char *>(&before_mxcsr));
inline_copy<sizeof(uint32_t)>(after_fenv_ptr + sizeof(X87StateDescriptor),
reinterpret_cast<char *>(&after_mxcsr));
#if defined(_WIN32)
EXPECT_EQ(before_state.control_word, after_state.control_word);
EXPECT_EQ(before_state.status_word, after_state.status_word);
#elif defined(__APPLE__)
EXPECT_EQ(before_state.control_word, after_state.control_word);
EXPECT_EQ(before_state.status_word, after_state.status_word);
EXPECT_EQ(before_state.mxcsr, after_state.mxcsr);
#else
EXPECT_EQ(before_state.x87_status.control_word,
after_state.x87_status.control_word);
EXPECT_EQ(before_state.x87_status.status_word,
after_state.x87_status.status_word);
EXPECT_EQ(before_state.mxcsr, after_state.mxcsr);
#endif
EXPECT_EQ(before_x87_state.control_word, after_x87_state.control_word);
EXPECT_EQ(before_x87_state.status_word, after_x87_state.status_word);
EXPECT_EQ(before_mxcsr, after_mxcsr);
} else if constexpr (sizeof(fenv_t) == sizeof(X87StateDescriptor)) {
const X87StateDescriptor &before_state =
reinterpret_cast<const X87StateDescriptor &>(before_fenv);
const X87StateDescriptor &after_state =
reinterpret_cast<const X87StateDescriptor &>(after_fenv);
EXPECT_EQ(before_state.control_word, after_state.control_word);
EXPECT_EQ(before_state.status_word, after_state.status_word);
} else if constexpr (sizeof(fenv_t) == sizeof(uint64_t)) {
const uint64_t &before_mxcsr =
reinterpret_cast<const uint64_t &>(before_fenv);
const uint64_t &after_mxcsr =
reinterpret_cast<const uint64_t &>(after_fenv);
EXPECT_EQ(before_mxcsr, after_mxcsr);
} else if constexpr (sizeof(fenv_t) == sizeof(uint32_t)) {
const uint32_t &before_mxcsr =
reinterpret_cast<const uint32_t &>(before_fenv);
const uint32_t &after_mxcsr =
reinterpret_cast<const uint32_t &>(after_fenv);
EXPECT_EQ(before_mxcsr, after_mxcsr);
}
#elif defined(LIBC_TARGET_ARCH_IS_ARM) && defined(__ARM_FP)
using LIBC_NAMESPACE::fputil::FEnv;

View File

@@ -26,21 +26,6 @@ using LlvmLibcExceptionStatusTest = LIBC_NAMESPACE::testing::FEnvSafeTest;
// This test enables an exception and verifies that raising that exception
// triggers SIGFPE.
TEST_F(LlvmLibcExceptionStatusTest, RaiseAndCrash) {
#if defined(LIBC_TARGET_ARCH_IS_ANY_ARM) || \
defined(LIBC_TARGET_ARCH_IS_ANY_RISCV)
// Few Arm HW implementations do not trap exceptions. We skip this test
// completely on such HW.
//
// Whether HW supports trapping exceptions or not is deduced by enabling an
// exception and reading back to see if the exception got enabled. If the
// exception did not get enabled, then it means that the HW does not support
// trapping exceptions.
LIBC_NAMESPACE::fputil::disable_except(FE_ALL_EXCEPT);
LIBC_NAMESPACE::fputil::enable_except(FE_DIVBYZERO);
if (LIBC_NAMESPACE::fputil::get_except() == 0)
return;
#endif // Architectures where exception trapping is not supported
// TODO: Install a floating point exception handler and verify that the
// the expected exception was raised. One will have to longjmp back from
// that exception handler, so such a testing can be done after we have
@@ -61,6 +46,7 @@ TEST_F(LlvmLibcExceptionStatusTest, RaiseAndCrash) {
ASSERT_EQ(LIBC_NAMESPACE::fetestexcept(others), others);
}
#if defined(LIBC_TRAP_ON_RAISE_FP_EXCEPT) && defined(__SSE__)
ASSERT_RAISES_FP_EXCEPT([=] {
// In test frameworks like Fuchsia's zxtest, this translates to
// a death test which runs this closure in a different thread. So,
@@ -69,6 +55,7 @@ TEST_F(LlvmLibcExceptionStatusTest, RaiseAndCrash) {
LIBC_NAMESPACE::fputil::enable_except(e);
LIBC_NAMESPACE::feraiseexcept(e);
});
#endif // LIBC_TRAP_ON_RAISE_FP_EXCEPT
// Cleanup.
LIBC_NAMESPACE::fputil::disable_except(FE_ALL_EXCEPT);

View File

@@ -20,21 +20,6 @@
using LlvmLibcFEnvTest = LIBC_NAMESPACE::testing::FEnvSafeTest;
TEST_F(LlvmLibcFEnvTest, RaiseAndCrash) {
#if defined(LIBC_TARGET_ARCH_IS_ANY_ARM) || \
defined(LIBC_TARGET_ARCH_IS_ANY_RISCV)
// Few Arm HW implementations do not trap exceptions. We skip this test
// completely on such HW.
//
// Whether HW supports trapping exceptions or not is deduced by enabling an
// exception and reading back to see if the exception got enabled. If the
// exception did not get enabled, then it means that the HW does not support
// trapping exceptions.
LIBC_NAMESPACE::fputil::disable_except(FE_ALL_EXCEPT);
LIBC_NAMESPACE::fputil::enable_except(FE_DIVBYZERO);
if (LIBC_NAMESPACE::fputil::get_except() == 0)
return;
#endif // Architectures where exception trapping is not supported
int excepts[] = {FE_DIVBYZERO, FE_INVALID, FE_INEXACT, FE_OVERFLOW,
FE_UNDERFLOW};
@@ -48,6 +33,7 @@ TEST_F(LlvmLibcFEnvTest, RaiseAndCrash) {
// should not crash/invoke the exception handler.
ASSERT_EQ(LIBC_NAMESPACE::fputil::raise_except(e), 0);
#if defined(LIBC_TRAP_ON_RAISE_FP_EXCEPT) && defined(__SSE__)
ASSERT_RAISES_FP_EXCEPT([=] {
// When we put back the saved env, which has the exception enabled, it
// should crash with SIGFPE. Note that we set the old environment
@@ -59,6 +45,7 @@ TEST_F(LlvmLibcFEnvTest, RaiseAndCrash) {
LIBC_NAMESPACE::fputil::set_env(&env);
LIBC_NAMESPACE::fputil::raise_except(e);
});
#endif // LIBC_TRAP_ON_RAISE_FP_EXCEPT
// Cleanup
LIBC_NAMESPACE::fputil::disable_except(FE_ALL_EXCEPT);

View File

@@ -21,7 +21,6 @@
using LlvmLibcFEnvTest = LIBC_NAMESPACE::testing::FEnvSafeTest;
#ifndef LIBC_TARGET_OS_IS_WINDOWS
TEST_F(LlvmLibcFEnvTest, GetEnvAndSetEnv) {
// We will disable all exceptions to prevent invocation of the exception
// handler.
@@ -73,17 +72,3 @@ TEST_F(LlvmLibcFEnvTest, Set_FE_DFL_ENV) {
int rm = LIBC_NAMESPACE::fegetround();
EXPECT_EQ(rm, FE_TONEAREST);
}
#endif
#ifdef LIBC_TARGET_OS_IS_WINDOWS
TEST_F(LlvmLibcFEnvTest, Windows_Set_Get_Test) {
// If a valid fenv_t is written, then reading it back out should be identical.
fenv_t setEnv = {0x7e00053e, 0x0f00000f};
fenv_t getEnv;
ASSERT_EQ(LIBC_NAMESPACE::fesetenv(&setEnv), 0);
ASSERT_EQ(LIBC_NAMESPACE::fegetenv(&getEnv), 0);
ASSERT_EQ(setEnv._Fe_ctl, getEnv._Fe_ctl);
ASSERT_EQ(setEnv._Fe_stat, getEnv._Fe_stat);
}
#endif

View File

@@ -10,19 +10,29 @@
#define LLVM_LIBC_TEST_SRC_MATH_FMODTEST_H
#include "hdr/errno_macros.h"
#include "hdr/math_macros.h"
#include "src/__support/FPUtil/BasicOperations.h"
#include "src/__support/FPUtil/NearestIntegerOperations.h"
#include "test/UnitTest/FEnvSafeTest.h"
#include "test/UnitTest/FPMatcher.h"
#include "test/UnitTest/Test.h"
#include "hdr/math_macros.h"
#ifdef FE_DENORM
#define DENORM_EXCEPT FE_DENORM
#elif defined(__FE_DENORM)
#define DENORM_EXCEPT __FE_DENORM
#else
#define DENORM_EXCEPT 0
#endif // FE_DENORM
#define TEST_SPECIAL(x, y, expected, dom_err, expected_exception) \
LIBC_NAMESPACE::fputil::clear_except(FE_ALL_EXCEPT); \
EXPECT_FP_EQ(expected, f(x, y)); \
EXPECT_MATH_ERRNO((dom_err) ? EDOM : 0); \
EXPECT_FP_EXCEPTION(expected_exception)
do { \
LIBC_NAMESPACE::fputil::clear_except(FE_ALL_EXCEPT); \
EXPECT_FP_EQ(expected, f(x, y)); \
EXPECT_MATH_ERRNO((dom_err) ? EDOM : 0); \
LIBC_NAMESPACE::fputil::clear_except(DENORM_EXCEPT); \
EXPECT_FP_EXCEPTION(expected_exception); \
} while (0)
#define TEST_REGULAR(x, y, expected) TEST_SPECIAL(x, y, expected, false, 0)
@@ -212,7 +222,6 @@ public:
void testRegularExtreme(FModFunc f) {
TEST_REGULAR(0x1p127L, 0x3p-149L, 0x1p-149L);
TEST_REGULAR(0x1p127L, -0x3p-149L, 0x1p-149L);
TEST_REGULAR(0x1p127L, 0x3p-148L, 0x1p-147L);
TEST_REGULAR(0x1p127L, -0x3p-148L, 0x1p-147L);

View File

@@ -10,19 +10,28 @@
#define LLVM_LIBC_TEST_SRC_MATH_FMODTEST_H
#include "hdr/errno_macros.h"
#include "hdr/fenv_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "test/UnitTest/FEnvSafeTest.h"
#include "test/UnitTest/FPMatcher.h"
#include "test/UnitTest/Test.h"
#include "hdr/fenv_macros.h"
#ifdef FE_DENORM
#define DENORM_EXCEPT FE_DENORM
#elif defined(__FE_DENORM)
#define DENORM_EXCEPT __FE_DENORM
#else
#define DENORM_EXCEPT 0
#endif // FE_DENORM
#define TEST_SPECIAL(x, y, expected, dom_err, expected_exception) \
LIBC_NAMESPACE::fputil::clear_except(FE_ALL_EXCEPT); \
EXPECT_FP_EQ(expected, f(x, y)); \
EXPECT_MATH_ERRNO((dom_err) ? EDOM : 0); \
EXPECT_FP_EXCEPTION(expected_exception); \
LIBC_NAMESPACE::fputil::clear_except(FE_ALL_EXCEPT)
do { \
LIBC_NAMESPACE::fputil::clear_except(FE_ALL_EXCEPT); \
EXPECT_FP_EQ(expected, f(x, y)); \
EXPECT_MATH_ERRNO((dom_err) ? EDOM : 0); \
LIBC_NAMESPACE::fputil::clear_except(DENORM_EXCEPT); \
EXPECT_FP_EXCEPTION(expected_exception); \
} while (0)
#define TEST_REGULAR(x, y, expected) TEST_SPECIAL(x, y, expected, false, 0)

View File

@@ -1222,6 +1222,10 @@ libc_support_library(
name = "__support_fputil_fenv_impl",
hdrs = ["src/__support/FPUtil/FEnvImpl.h"],
textual_hdrs = [
"src/__support/FPUtil/x86_64/fenv_mxcsr_utils.h",
"src/__support/FPUtil/x86_64/fenv_x86_common.h",
"src/__support/FPUtil/x86_64/fenv_x87_only.h",
"src/__support/FPUtil/x86_64/fenv_x87_utils.h",
"src/__support/FPUtil/x86_64/FEnvImpl.h",
"src/__support/FPUtil/aarch64/FEnvImpl.h",
"src/__support/FPUtil/aarch64/fenv_darwin_impl.h",