The PNaCl target no longer permits __attribute__((regparm)).

Remove the custom lowering code dealing with it, disallow it in PNaclTargetInfo
and adjust tests accordingly.

llvm-svn: 179059
This commit is contained in:
Eli Bendersky
2013-04-08 21:31:01 +00:00
parent 68f832c2ec
commit 4f6791cafb
3 changed files with 19 additions and 74 deletions

View File

@@ -621,7 +621,7 @@ class NaClTargetInfo : public OSTargetInfo<Target> {
this->SizeType = TargetInfo::UnsignedInt;
this->PtrDiffType = TargetInfo::SignedInt;
this->IntPtrType = TargetInfo::SignedInt;
this->RegParmMax = 2;
// RegParmMax is inherited from the underlying architecture
this->LongDoubleFormat = &llvm::APFloat::IEEEdouble;
this->DescriptionString = "e-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-"
"f32:32:32-f64:64:64-p:32:32:32-v128:32:32";
@@ -4862,7 +4862,7 @@ public:
this->SizeType = TargetInfo::UnsignedInt;
this->PtrDiffType = TargetInfo::SignedInt;
this->IntPtrType = TargetInfo::SignedInt;
this->RegParmMax = 2;
this->RegParmMax = 0; // Disallow regparm
DescriptionString = "e-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-"
"f32:32:32-f64:64:64-p:32:32:32-v128:32:32";
}

View File

@@ -398,6 +398,9 @@ ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
//===----------------------------------------------------------------------===//
// le32/PNaCl bitcode ABI Implementation
//
// This is a simplified version of the x86_32 ABI. Arguments and return values
// are always passed on the stack.
//===----------------------------------------------------------------------===//
class PNaClABIInfo : public ABIInfo {
@@ -405,7 +408,7 @@ class PNaClABIInfo : public ABIInfo {
PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
ABIArgInfo classifyReturnType(QualType RetTy) const;
ABIArgInfo classifyArgumentType(QualType RetTy, unsigned &FreeRegs) const;
ABIArgInfo classifyArgumentType(QualType RetTy) const;
virtual void computeInfo(CGFunctionInfo &FI) const;
virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
@@ -421,13 +424,9 @@ class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
// Obtain the initial number of registers available for passing integers
// from the function's regparm attribute.
unsigned FreeRegs = FI.getHasRegParm() ? FI.getRegParm() : 0;
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
it != ie; ++it)
it->info = classifyArgumentType(it->type, FreeRegs);
it->info = classifyArgumentType(it->type);
}
llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
@@ -435,42 +434,25 @@ llvm::Value *PNaClABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
return 0;
}
/// \brief Classify argument of given type \p Ty. \p FreeRegs is the number of
/// registers available for passing arguments - it can be updated by this
/// method.
ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty,
unsigned &FreeRegs) const {
/// \brief Classify argument of given type \p Ty.
ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
if (isAggregateTypeForABI(Ty)) {
// In the PNaCl ABI we always pass records/structures on the stack. The
// byval attribute can be used if the record doesn't have non-trivial
// constructors/destructors.
FreeRegs = 0;
if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
return ABIArgInfo::getIndirect(0);
}
// Treat an enum type as its underlying type.
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
} else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
// Treat an enum type as its underlying type.
Ty = EnumTy->getDecl()->getIntegerType();
ABIArgInfo BaseInfo = (Ty->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
// Figure out how many of the free registers can be occupied by this type.
// regparm registers are 32-bit.
unsigned NumRegsRequired = (getContext().getTypeSize(Ty) + 31) / 32;
if (NumRegsRequired == 0) return BaseInfo;
if (NumRegsRequired > FreeRegs) {
// If this type needs more registers than we have available, no more
// passing in-registers can happen.
FreeRegs = 0;
return BaseInfo;
} else if (Ty->isFloatingType()) {
// Floating-point types don't go inreg.
return ABIArgInfo::getDirect();
}
FreeRegs -= NumRegsRequired;
return BaseInfo.isDirect() ?
ABIArgInfo::getDirectInReg(BaseInfo.getCoerceToType()) :
ABIArgInfo::getExtendInReg(BaseInfo.getCoerceToType());
return (Ty->isPromotableIntegerType() ?
ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
}
ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {

View File

@@ -1,41 +1,4 @@
// RUN: %clang_cc1 -triple le32-unknown-nacl %s -emit-llvm -o - | FileCheck %s
// RUN: %clang_cc1 -triple le32-unknown-nacl %s -fsyntax-only -verify
#define FASTCALL __attribute__((regparm(2)))
void __attribute__((regparm(2))) fc_f1(int i, int j, int k) {} // expected-error{{'regparm' is not valid on this platform}}
typedef struct {
int aaa;
double bbbb;
int ccc[200];
} foo;
// 2 inreg arguments are supported.
void FASTCALL f1(int i, int j, int k);
// CHECK: define void @f1(i32 inreg %i, i32 inreg %j, i32 %k)
void f1(int i, int j, int k) { }
// inreg structs are not supported.
// CHECK: define void @f2(%struct.foo* inreg %a)
void __attribute__((regparm(1))) f2(foo* a) {}
// Only the first 2 arguments can be passed inreg, and the first
// non-integral type consumes remaining available registers.
// CHECK: define void @f3(%struct.foo* byval %a, i32 %b)
void __attribute__((regparm(2))) f3(foo a, int b) {}
// Only 64 total bits are supported
// CHECK: define void @f4(i64 inreg %g, i32 %h)
void __attribute__((regparm(2))) f4(long long g, int h) {}
typedef void (*FType)(int, int) __attribute ((regparm (2)));
FType bar;
extern void FASTCALL reduced(char b, double c, foo* d, double e, int f);
int
main(void) {
// The presence of double c means that foo* d is not passed inreg. This
// behavior is different from current x86-32 behavior
// CHECK: call void @reduced(i8 inreg signext 0, {{.*}} %struct.foo* null
reduced(0, 0.0, 0, 0.0, 0);
// CHECK: call void {{.*}}(i32 inreg 1, i32 inreg 2)
bar(1,2);
}