[mlir][vector] Add lowering of Transfer_read with broadcast and permutation map

Convert transfer_read ops with permutation maps into simpler
transfer_read with minority map + vector.braodcast and vector.transpose.
And transfer_read with leading dimensions broacast into transfer_read of
lower rank.

Differential Revision: https://reviews.llvm.org/D99019
This commit is contained in:
thomasraoux
2021-03-24 09:53:53 -07:00
parent e06f1a8e3c
commit 5288c25c70
4 changed files with 241 additions and 2 deletions

View File

@@ -113,6 +113,22 @@ public:
bool isMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> *broadcastedDims = nullptr) const;
/// Return true if this affine map can be converted to a minor identity with
/// broadcast by doing a permute. Return a permutation (there may be
/// several) to apply to get to a minor identity with broadcasts.
/// Ex:
/// * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with
/// perm = [1, 0] and broadcast d2
/// * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by
/// permutation + broadcast
/// * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3)
/// with perm = [1, 0, 2] and broadcast d2
/// * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra
/// leading broadcat dimensions. The map returned would be (0, 0, d0, d1)
/// with perm = [3, 0, 1, 2]
bool isPermutationOfMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> &permutedDims) const;
/// Returns true if this affine map is an empty map, i.e., () -> ().
bool isEmpty() const;

View File

@@ -2842,6 +2842,113 @@ struct TransferWriteToVectorStoreLowering
}
};
/// Lower transfer_read op with permutation into a transfer_read with a
/// permutation map composed of leading zeros followed by a minor identiy +
/// vector.transpose op.
/// Ex:
/// vector.transfer_read ...
/// permutation_map: (d0, d1, d2) -> (0, d1)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2) -> (d1, 0)
/// vector.transpose %v, [1, 0]
///
/// vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, 0, 0, d1, d3)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, 0, d1, 0, d3)
/// vector.transpose %v, [0, 1, 3, 2, 4]
/// Note that an alternative is to transform it to linalg.transpose +
/// vector.transfer_read to do the transpose in memory instead.
struct TransferReadPermutationLowering
: public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp op,
PatternRewriter &rewriter) const override {
SmallVector<unsigned> permutation;
AffineMap map = op.permutation_map();
if (!map.isPermutationOfMinorIdentityWithBroadcasting(permutation))
return failure();
AffineMap permutationMap =
map.getPermutationMap(permutation, op.getContext());
if (permutationMap.isIdentity())
return failure();
// Caluclate the map of the new read by applying the inverse permutation.
permutationMap = inversePermutation(permutationMap);
AffineMap newMap = permutationMap.compose(map);
// Apply the reverse transpose to deduce the type of the transfer_read.
ArrayRef<int64_t> originalShape = op.getVectorType().getShape();
SmallVector<int64_t> newVectorShape(originalShape.size());
for (auto pos : llvm::enumerate(permutation)) {
newVectorShape[pos.value()] = originalShape[pos.index()];
}
VectorType newReadType =
VectorType::get(newVectorShape, op.getVectorType().getElementType());
Value newRead = rewriter.create<vector::TransferReadOp>(
op.getLoc(), newReadType, op.source(), op.indices(), newMap,
op.padding(), op.masked() ? *op.masked() : ArrayAttr());
SmallVector<int64_t> transposePerm(permutation.begin(), permutation.end());
rewriter.replaceOpWithNewOp<vector::TransposeOp>(op, newRead,
transposePerm);
return success();
}
};
/// Lower transfer_read op with broadcast in the leading dimensions into
/// transfer_read of lower rank + vector.broadcast.
/// Ex: vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (0, d1, 0, d3)
/// into:
/// %v = vector.transfer_read ...
/// permutation_map: (d0, d1, d2, d3) -> (d1, 0, d3)
/// vector.broadcast %v
struct TransferOpReduceRank : public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp op,
PatternRewriter &rewriter) const override {
AffineMap map = op.permutation_map();
unsigned numLeadingBroadcast = 0;
for (auto expr : map.getResults()) {
auto dimExpr = expr.dyn_cast<AffineConstantExpr>();
if (!dimExpr || dimExpr.getValue() != 0)
break;
numLeadingBroadcast++;
}
// If there are no leading zeros in the map there is nothing to do.
if (numLeadingBroadcast == 0)
return failure();
VectorType originalVecType = op.getVectorType();
unsigned reducedShapeRank = originalVecType.getRank() - numLeadingBroadcast;
// Calculate new map, vector type and masks without the leading zeros.
AffineMap newMap = AffineMap::get(
map.getNumDims(), 0, map.getResults().take_back(reducedShapeRank),
op.getContext());
// Only remove the leading zeros if the rest of the map is a minor identity
// with broadasting. Otherwise we first want to permute the map.
if (!newMap.isMinorIdentityWithBroadcasting())
return failure();
SmallVector<int64_t> newShape = llvm::to_vector<4>(
originalVecType.getShape().take_back(reducedShapeRank));
VectorType newReadType =
VectorType::get(newShape, originalVecType.getElementType());
ArrayAttr newMask =
op.masked()
? rewriter.getArrayAttr(
op.maskedAttr().getValue().take_back(reducedShapeRank))
: ArrayAttr();
Value newRead = rewriter.create<vector::TransferReadOp>(
op.getLoc(), newReadType, op.source(), op.indices(), newMap,
op.padding(), newMask);
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, originalVecType,
newRead);
return success();
}
};
// Trims leading one dimensions from `oldType` and returns the result type.
// Returns `vector<1xT>` if `oldType` only has one element.
static VectorType trimLeadingOneDims(VectorType oldType) {
@@ -3317,6 +3424,8 @@ void mlir::vector::populateVectorContractLoweringPatterns(
void mlir::vector::populateVectorTransferLoweringPatterns(
RewritePatternSet &patterns) {
patterns.add<TransferReadToVectorLoadLowering,
TransferWriteToVectorStoreLowering>(patterns.getContext());
patterns
.add<TransferReadToVectorLoadLowering, TransferWriteToVectorStoreLowering,
TransferReadPermutationLowering, TransferOpReduceRank>(
patterns.getContext());
}

View File

@@ -12,6 +12,7 @@
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
@@ -140,6 +141,66 @@ bool AffineMap::isMinorIdentityWithBroadcasting(
return true;
}
/// Return true if this affine map can be converted to a minor identity with
/// broadcast by doing a permute. Return a permutation (there may be
/// several) to apply to get to a minor identity with broadcasts.
/// Ex:
/// * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with
/// perm = [1, 0] and broadcast d2
/// * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by
/// permutation + broadcast
/// * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3)
/// with perm = [1, 0, 2] and broadcast d2
/// * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra
/// leading broadcat dimensions. The map returned would be (0, 0, d0, d1) with
/// perm = [3, 0, 1, 2]
bool AffineMap::isPermutationOfMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> &permutedDims) const {
unsigned projectionStart =
getNumResults() < getNumInputs() ? getNumInputs() - getNumResults() : 0;
permutedDims.clear();
SmallVector<unsigned> broadcastDims;
permutedDims.resize(getNumResults(), 0);
// If there are more results than input dimensions we want the new map to
// start with broadcast dimensions in order to be a minor identity with
// broadcasting.
unsigned leadingBroadcast =
getNumResults() > getNumInputs() ? getNumResults() - getNumInputs() : 0;
llvm::SmallBitVector dimFound(std::max(getNumInputs(), getNumResults()),
false);
for (auto idxAndExpr : llvm::enumerate(getResults())) {
unsigned resIdx = idxAndExpr.index();
AffineExpr expr = idxAndExpr.value();
// Each result may be either a constant 0 (broadcast dimension) or a
// dimension.
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
if (constExpr.getValue() != 0)
return false;
broadcastDims.push_back(resIdx);
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
if (dimExpr.getPosition() < projectionStart)
return false;
unsigned newPosition =
dimExpr.getPosition() - projectionStart + leadingBroadcast;
permutedDims[resIdx] = newPosition;
dimFound[newPosition] = true;
} else {
return false;
}
}
// Find a permuation for the broadcast dimension. Since they are broadcasted
// any valid permutation is acceptable. We just permute the dim into a slot
// without an existing dimension.
unsigned pos = 0;
for (auto dim : broadcastDims) {
while (pos < dimFound.size() && dimFound[pos]) {
pos++;
}
permutedDims[dim] = pos++;
}
return true;
}
/// Returns an AffineMap representing a permutation.
AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
MLIRContext *context) {

View File

@@ -206,3 +206,56 @@ func @transfer_broadcasting_complex(%mem : memref<10x20x30x8x8xf32>, %i : index)
%res = vector.transfer_read %mem[%i, %i, %i, %i, %i], %cf0 {masked = [false, false, false, false], permutation_map = #broadcast} : memref<10x20x30x8x8xf32>, vector<3x2x4x5xf32>
return %res : vector<3x2x4x5xf32>
}
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> (d1, d0, 0, 0)>
#map1 = affine_map<(d0, d1, d2, d3) -> (0, d1, 0, d0)>
#map2 = affine_map<(d0, d1, d2, d3) -> (d3, d1, 0, 0)>
#map3 = affine_map<(d0, d1) -> (d1, d0, 0, 0)>
#map4 = affine_map<(d0, d1) -> (0, d1, 0, d0)>
#map5 = affine_map<(d0, d1, d2, d3) -> (d2, d1, d3, d0)>
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, 0, 0)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, 0, d3)>
// CHECK-LABEL: func @transfer_read_permutations
func @transfer_read_permutations(%arg0 : memref<?x?xf32>, %arg1 : memref<?x?x?x?xf32>)
-> (vector<7x14x8x16xf32>, vector<7x14x8x16xf32>, vector<7x14x8x16xf32>,
vector<7x14x8x16xf32>, vector<7x14x8x16xf32>, vector<7x14x8x16xf32>) {
// CHECK-DAG: %[[CF0:.*]] = constant 0.000000e+00 : f32
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
%cst = constant 0.000000e+00 : f32
%c0 = constant 0 : index
%0 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %cst {permutation_map = #map0} : memref<?x?x?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read {{.*}} {permutation_map = #[[$MAP0]]} : memref<?x?x?x?xf32>, vector<14x7x8x16xf32>
// CHECK: vector.transpose %{{.*}}, [1, 0, 2, 3] : vector<14x7x8x16xf32> to vector<7x14x8x16xf32>
%1 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %cst {permutation_map = #map1} : memref<?x?x?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read {{.*}} {permutation_map = #[[$MAP0]]} : memref<?x?x?x?xf32>, vector<16x14x7x8xf32>
// CHECK: vector.transpose %{{.*}}, [2, 1, 3, 0] : vector<16x14x7x8xf32> to vector<7x14x8x16xf32>
%2 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %cst {masked = [false, false, true, false], permutation_map = #map2} : memref<?x?x?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read {{.*}} {masked = [false, true, false], permutation_map = #[[$MAP1]]} : memref<?x?x?x?xf32>, vector<14x16x7xf32>
// CHECK: vector.broadcast %{{.*}} : vector<14x16x7xf32> to vector<8x14x16x7xf32>
// CHECK: vector.transpose %{{.*}}, [3, 1, 0, 2] : vector<8x14x16x7xf32> to vector<7x14x8x16xf32>
%3 = vector.transfer_read %arg0[%c0, %c0], %cst {permutation_map = #map3} : memref<?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read %{{.*}}[%[[C0]], %[[C0]]], %[[CF0]] : memref<?x?xf32>, vector<14x7xf32>
// CHECK: vector.broadcast %{{.*}} : vector<14x7xf32> to vector<8x16x14x7xf32>
// CHECK: vector.transpose %{{.*}}, [3, 2, 0, 1] : vector<8x16x14x7xf32> to vector<7x14x8x16xf32>
%4 = vector.transfer_read %arg0[%c0, %c0], %cst {permutation_map = #map4} : memref<?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read %{{.*}}[%[[C0]], %[[C0]]], %[[CF0]] : memref<?x?xf32>, vector<16x14xf32>
// CHECK: vector.broadcast %{{.*}} : vector<16x14xf32> to vector<7x8x16x14xf32>
// CHECK: vector.transpose %{{.*}}, [0, 3, 1, 2] : vector<7x8x16x14xf32> to vector<7x14x8x16xf32>
%5 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %cst {permutation_map = #map5} : memref<?x?x?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read %{{.*}}[%[[C0]], %[[C0]], %[[C0]], %[[C0]]], %[[CF0]] : memref<?x?x?x?xf32>, vector<16x14x7x8xf32>
// CHECK: vector.transpose %{{.*}}, [2, 1, 3, 0] : vector<16x14x7x8xf32> to vector<7x14x8x16xf32>
return %0, %1, %2, %3, %4, %5 : vector<7x14x8x16xf32>, vector<7x14x8x16xf32>,
vector<7x14x8x16xf32>, vector<7x14x8x16xf32>, vector<7x14x8x16xf32>,
vector<7x14x8x16xf32>
}