[mlir][sparse] support parallel for/reduction in sparsification.

This patch fix the re-revert D135927 (which caused a windows build failure) to re-enable parallel for/reduction. It also fix a warning caused by D137442.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D137565
This commit is contained in:
Peiming Liu
2022-11-07 17:10:01 +00:00
parent c4b74658c7
commit 75ac294b35
7 changed files with 284 additions and 126 deletions

View File

@@ -219,9 +219,12 @@ Operation *SparseTensorLoopEmitter::enterLoopOverTensorAtDim(
OpBuilder &builder, Location loc, size_t tid, size_t dim,
MutableArrayRef<Value> reduc, bool isParallel, ArrayRef<size_t> extraTids,
ArrayRef<size_t> extraDims) {
assert(dimTypes[tid].size() > dim);
// We can not re-enter the same level.
assert(!coord[tid][dim]);
// TODO: support multiple return on parallel for?
assert(!isParallel || reduc.size() <= 1);
Value step = constantIndex(builder, loc, 1);
auto dimType = dimTypes[tid][dim];
@@ -232,11 +235,38 @@ Operation *SparseTensorLoopEmitter::enterLoopOverTensorAtDim(
Value lo = isSparseInput ? pidxs[tid][dim] // current offset
: loopSeqStack.back(); // univeral tid
Value hi = highs[tid][dim];
Operation *loop = nullptr;
Value iv;
if (isParallel) {
scf::ParallelOp parOp =
builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(parOp.getBody());
assert(parOp.getNumReductions() == reduc.size());
iv = parOp.getInductionVars()[0];
// In-place update on the reduction variable vector.
// Note that the init vals is not the actual reduction variables but instead
// used as a `special handle` to (temporarily) represent them. The
// expression on init vals will be moved into scf.reduce and replaced with
// the block arguments when exiting the loop (see exitForLoop). This is
// needed as we can not build the actual reduction block and get the actual
// reduction varaible before users fill parallel loop body.
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = parOp.getInitVals()[i];
loop = parOp;
} else {
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(forOp.getBody());
iv = forOp.getInductionVar();
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
loop = forOp;
}
assert(loop && iv);
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(forOp.getBody());
Value iv = forOp.getInductionVar();
assert(iv);
if (isSparseInput) {
pidxs[tid][dim] = iv;
// Generating a load on the indices array yields the coordinate.
@@ -253,16 +283,12 @@ Operation *SparseTensorLoopEmitter::enterLoopOverTensorAtDim(
// NOTE: we can also prepares for next dim here in advance
// Push the loop into stack
loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), forOp,
loopStack.emplace_back(ArrayRef<size_t>(tid), ArrayRef<size_t>(dim), loop,
coord[tid][dim]);
// Emit extra locals.
emitExtraLocalsForTensorsAtDenseDims(builder, loc, extraTids, extraDims);
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
return forOp;
return loop;
}
Operation *SparseTensorLoopEmitter::enterCoIterationOverTensorsAtDims(
@@ -434,17 +460,73 @@ void SparseTensorLoopEmitter::emitExtraLocalsForTensorsAtDenseDims(
}
}
SmallVector<Value, 2>
SparseTensorLoopEmitter::exitForLoop(OpBuilder &builder, Location loc,
ArrayRef<Value> reduc) {
void SparseTensorLoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
LoopLevelInfo &loopInfo = loopStack.back();
auto &dims = loopStack.back().dims;
auto &tids = loopStack.back().tids;
auto forOp = llvm::cast<scf::ForOp>(loopInfo.loop);
if (!reduc.empty()) {
assert(reduc.size() == forOp.getNumResults());
builder.setInsertionPointToEnd(forOp.getBody());
builder.create<scf::YieldOp>(loc, reduc);
auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop);
if (forOp) {
if (!reduc.empty()) {
assert(reduc.size() == forOp.getNumResults());
rewriter.setInsertionPointToEnd(forOp.getBody());
rewriter.create<scf::YieldOp>(loc, reduc);
}
// Exit the loop.
rewriter.setInsertionPointAfter(forOp);
// In-place update reduction variables.
for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++)
reduc[i] = forOp.getResult(i);
} else {
auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
if (!reduc.empty()) {
assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
Operation *redExp = reduc.front().getDefiningOp();
// Reduction expression should have no use.
assert(redExp->getUses().empty());
// This must be a binary operation.
// NOTE: This is users' responsibilty to ensure the operation are
// commutative.
assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);
Value redVal = parOp.getInitVals().front();
Value curVal;
if (redExp->getOperand(0) == redVal)
curVal = redExp->getOperand(1);
else if (redExp->getOperand(1) == redVal)
curVal = redExp->getOperand(0);
// One of the operands must be the init value (which is also the
// previous reduction value).
assert(curVal);
// The reduction expression should be the only user of the reduction val
// inside the parallel for.
unsigned numUsers = 0;
for (Operation *op : redVal.getUsers()) {
if (op->getParentOp() == parOp)
numUsers++;
}
assert(numUsers == 1);
(void)numUsers; // to silence unused variable warning in release build
rewriter.setInsertionPointAfter(redExp);
auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
// Attach to the reduction op.
Block *redBlock = &redOp.getRegion().getBlocks().front();
rewriter.setInsertionPointToEnd(redBlock);
Operation *newRed = rewriter.clone(*redExp);
// Replaces arguments of the reduction expression by using the block
// arguments from scf.reduce.
rewriter.updateRootInPlace(
newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
// Erases the out-dated reduction expression.
rewriter.eraseOp(redExp);
rewriter.setInsertionPointToEnd(redBlock);
rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
}
rewriter.setInsertionPointAfter(parOp);
// In-place update reduction variables.
for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
reduc[i] = parOp.getResult(i);
}
// Finished iterating a tensor, clean up
@@ -458,14 +540,10 @@ SparseTensorLoopEmitter::exitForLoop(OpBuilder &builder, Location loc,
if (!isDenseDLT(dimTypes[tid][dim]))
highs[tid][dim] = Value();
}
// exit the loop
builder.setInsertionPointAfter(forOp);
return forOp.getResults();
}
SmallVector<Value, 2>
SparseTensorLoopEmitter::exitCoiterationLoop(OpBuilder &builder, Location loc,
ArrayRef<Value> reduc) {
void SparseTensorLoopEmitter::exitCoIterationLoop(
OpBuilder &builder, Location loc, MutableArrayRef<Value> reduc) {
auto whileOp = llvm::cast<scf::WhileOp>(loopStack.back().loop);
auto &dims = loopStack.back().dims;
auto &tids = loopStack.back().tids;
@@ -499,10 +577,10 @@ SparseTensorLoopEmitter::exitCoiterationLoop(OpBuilder &builder, Location loc,
}
// Reduction value from users.
SmallVector<Value, 2> ret;
for (auto red : reduc) {
operands.push_back(red);
ret.push_back(whileOp->getResult(o++));
for (unsigned i = 0, e = reduc.size(); i < e; i++) {
operands.push_back(reduc[i]);
// In place update reduction variable.
reduc[i] = whileOp->getResult(o++);
}
// An (optional) universal index.
@@ -517,26 +595,24 @@ SparseTensorLoopEmitter::exitCoiterationLoop(OpBuilder &builder, Location loc,
assert(o == operands.size());
builder.create<scf::YieldOp>(loc, operands);
builder.setInsertionPointAfter(whileOp);
return ret;
}
SmallVector<Value, 2>
SparseTensorLoopEmitter::exitCurrentLoop(OpBuilder &builder, Location loc,
ArrayRef<Value> reduc) {
void SparseTensorLoopEmitter::exitCurrentLoop(RewriterBase &rewriter,
Location loc,
MutableArrayRef<Value> reduc) {
// Clean up the values, it would help use to discover potential bug at a
// earlier stage (instead of silently using a wrong value).
LoopLevelInfo &loopInfo = loopStack.back();
assert(loopInfo.tids.size() == loopInfo.dims.size());
SmallVector<Value, 2> red;
if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
red = exitCoiterationLoop(builder, loc, reduc);
exitCoIterationLoop(rewriter, loc, reduc);
} else {
red = exitForLoop(builder, loc, reduc);
exitForLoop(rewriter, loc, reduc);
}
assert(loopStack.size() == loopSeqStack.size());
loopStack.pop_back();
return red;
}
//===----------------------------------------------------------------------===//

View File

@@ -380,8 +380,8 @@ public:
ArrayRef<size_t> dims, bool needsUniv, MutableArrayRef<Value> reduc = {},
ArrayRef<size_t> extraTids = {}, ArrayRef<size_t> extraDims = {});
SmallVector<Value, 2> exitCurrentLoop(OpBuilder &builder, Location loc,
ArrayRef<Value> reduc = {});
void exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc = {});
/// Returns the array of coordinate for all the loop generated till now.
void getCoordinateArray(SmallVectorImpl<Value> &coords) const {
@@ -452,17 +452,35 @@ private:
ArrayRef<size_t> dims);
/// Exits a for loop, returns the reduction results, e.g.,
/// For sequential for loops:
/// %ret = for () {
/// ...
/// %val = addi %args, %c
/// yield %val
/// }
/// Return %ret to user, while %val is provided by users (`reduc`)
SmallVector<Value, 2> exitForLoop(OpBuilder &builder, Location loc,
ArrayRef<Value> reduc);
/// For parallel loops, the following generated code by users:
/// %ret = parallel () init(%args) {
/// ...
/// %val = op %args, %c
/// }
/// will be transformed into
/// %ret = parallel () init(%args) {
/// ...
/// scf.reduce(%c) bb0(%0, %1){
/// %val = op %0, %1
/// scf.reduce.return %val
/// }
/// }
/// NOTE: only one instruction will be moved into reduce block, transformation
/// will fail if multiple instructions are used to compute the reduction
/// value.
/// Return %ret to user, while %val is provided by users (`reduc`).
void exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc);
/// Exits a while loop, returns the reduction results.
SmallVector<Value, 2> exitCoiterationLoop(OpBuilder &builder, Location loc,
ArrayRef<Value> reduc);
void exitCoIterationLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc);
// Whether the loop emitter needs to treat the last tensor as the output
// tensor.

View File

@@ -410,6 +410,34 @@ static Value getCustomRedId(Operation *op) {
// Sparse compiler synthesis methods (statements and expressions).
//===----------------------------------------------------------------------===//
/// Generates loop boundary statements (entering/exiting loops). The function
/// passes and updates the reduction value.
static Optional<Operation *> genLoopBoundary(
CodeGen &codegen, Merger &merger,
function_ref<Optional<Operation *>(MutableArrayRef<Value> reduc)>
callback) {
SmallVector<Value, 4> reduc;
if (codegen.redVal)
reduc.push_back(codegen.redVal);
if (codegen.expValues)
reduc.push_back(codegen.expCount);
if (codegen.insChain)
reduc.push_back(codegen.insChain);
auto r = callback(reduc);
// Callback should do in-place update on reduction value vector.
unsigned i = 0;
if (codegen.redVal)
updateReduc(merger, codegen, reduc[i++]);
if (codegen.expValues)
codegen.expCount = reduc[i++];
if (codegen.insChain)
codegen.insChain = reduc[i];
return r;
}
/// Local bufferization of all dense and sparse data structures.
static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder,
linalg::GenericOp op) {
@@ -869,23 +897,25 @@ static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder,
/// Returns parallelization strategy. Any implicit loop in the Linalg
/// operation that is marked "parallel" is a candidate. Whether it is actually
/// converted to a parallel operation depends on the requested strategy.
static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
bool isSparse) {
static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isSparse) {
// Reject parallelization of sparse output.
if (codegen.sparseOut)
return false;
// Parallel loops on tensor expansion can cause data races.
if (codegen.expCount)
return false;
// Inspect strategy.
switch (codegen.options.parallelizationStrategy) {
case SparseParallelizationStrategy::kNone:
return false;
case SparseParallelizationStrategy::kDenseOuterLoop:
return isOuter && !isSparse && !isReduction;
return isOuter && !isSparse;
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
return isOuter && !isReduction;
return isOuter;
case SparseParallelizationStrategy::kDenseAnyLoop:
return !isSparse && !isReduction;
return !isSparse;
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
return !isReduction;
return true;
}
llvm_unreachable("unexpected parallelization strategy");
}
@@ -898,33 +928,16 @@ static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder,
ArrayRef<size_t> extraDims) {
Location loc = op.getLoc();
auto iteratorTypes = op.getIteratorTypesArray();
bool isReduction = linalg::isReductionIterator(iteratorTypes[idx]);
bool isSparse = isCompressedDLT(merger.getDimLevelType(tid, idx)) ||
isSingletonDLT(merger.getDimLevelType(tid, idx));
bool isParallel = isParallelFor(codegen, isOuter, isReduction, isSparse);
assert(!isParallel);
// Emit a sequential for loop.
SmallVector<Value, 4> operands;
if (codegen.redVal)
operands.push_back(codegen.redVal);
if (codegen.expValues)
operands.push_back(codegen.expCount);
if (codegen.insChain)
operands.push_back(codegen.insChain);
Operation *loop = codegen.loopEmitter.enterLoopOverTensorAtDim(
builder, loc, tid, dim, operands, isParallel, extraTids, extraDims);
unsigned o = 0;
if (codegen.redVal)
updateReduc(merger, codegen, operands[o++]);
if (codegen.expValues)
codegen.expCount = operands[o++];
if (codegen.insChain)
codegen.insChain = operands[o++];
assert(o == operands.size());
bool isParallel = isParallelFor(codegen, isOuter, isSparse);
Operation *loop =
genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
return codegen.loopEmitter.enterLoopOverTensorAtDim(
builder, loc, tid, dim, reduc, isParallel, extraTids, extraDims);
}).value();
assert(loop);
return loop;
}
@@ -934,29 +947,15 @@ static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder,
ArrayRef<size_t> condTids, ArrayRef<size_t> condDims,
ArrayRef<size_t> extraTids,
ArrayRef<size_t> extraDims) {
SmallVector<Value, 4> operands;
// Construct the while-loop with a parameter for each index.
if (codegen.redVal)
operands.push_back(codegen.redVal);
if (codegen.expValues)
operands.push_back(codegen.expCount);
if (codegen.insChain)
operands.push_back(codegen.insChain);
Operation *loop = codegen.loopEmitter.enterCoIterationOverTensorsAtDims(
builder, op.getLoc(), condTids, condDims, needsUniv, operands, extraTids,
extraDims);
unsigned o = 0;
if (codegen.redVal)
updateReduc(merger, codegen, operands[o++]);
if (codegen.expValues)
codegen.expCount = operands[o++];
if (codegen.insChain)
codegen.insChain = operands[o++];
assert(o == operands.size());
Operation *loop =
genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
// Construct the while-loop with a parameter for each index.
return codegen.loopEmitter.enterCoIterationOverTensorsAtDims(
builder, op.getLoc(), condTids, condDims, needsUniv, reduc,
extraTids, extraDims);
}).value();
assert(loop);
return loop;
}
@@ -1186,37 +1185,21 @@ static Operation *startLoop(Merger &merger, CodeGen &codegen,
}
/// Ends a single loop in current sequence. Returns new values for needsUniv.
static bool endLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
static bool endLoop(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
linalg::GenericOp op, Operation *loop, unsigned idx,
unsigned li, bool needsUniv) {
// End a while-loop.
if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
finalizeWhileOp(merger, codegen, builder, op, idx, needsUniv,
finalizeWhileOp(merger, codegen, rewriter, op, idx, needsUniv,
merger.lat(li).bits, whileOp);
} else {
needsUniv = false;
}
SmallVector<Value, 2> reduc;
if (codegen.redVal)
reduc.push_back(codegen.redVal);
if (codegen.expValues)
reduc.push_back(codegen.expCount);
if (codegen.insChain)
reduc.push_back(codegen.insChain);
auto loopRet =
codegen.loopEmitter.exitCurrentLoop(builder, op.getLoc(), reduc);
assert(reduc.size() == loopRet.size());
unsigned o = 0;
if (codegen.redVal)
updateReduc(merger, codegen, loopRet[o++]);
if (codegen.expValues)
codegen.expCount = loopRet[o++];
if (codegen.insChain)
codegen.insChain = loopRet[o++];
assert(o == loopRet.size());
genLoopBoundary(codegen, merger, [&](MutableArrayRef<Value> reduc) {
codegen.loopEmitter.exitCurrentLoop(rewriter, op.getLoc(), reduc);
return llvm::None;
});
return needsUniv;
}

View File

@@ -1,14 +1,13 @@
// RUN: mlir-opt %s -sparsification="parallelization-strategy=none" | \
// RUN: FileCheck %s --check-prefix=CHECK-PAR0
// FIXME: we do not support vectorization/parallel loops in loop emitter right now
// R_U_N: mlir-opt %s -sparsification="parallelization-strategy=dense-outer-loop" | \
// R_U_N: FileCheck %s --check-prefix=CHECK-PAR1
// R_U_N: mlir-opt %s -sparsification="parallelization-strategy=any-storage-outer-loop" | \
// R_U_N: FileCheck %s --check-prefix=CHECK-PAR2
// R_U_N: mlir-opt %s -sparsification="parallelization-strategy=dense-any-loop" | \
// R_U_N: FileCheck %s --check-prefix=CHECK-PAR3
// R_U_N: mlir-opt %s -sparsification="parallelization-strategy=any-storage-any-loop" | \
// R_U_N: FileCheck %s --check-prefix=CHECK-PAR4
// RUN: mlir-opt %s -sparsification="parallelization-strategy=dense-outer-loop" | \
// RUN: FileCheck %s --check-prefix=CHECK-PAR1
// RUN: mlir-opt %s -sparsification="parallelization-strategy=any-storage-outer-loop" | \
// RUN: FileCheck %s --check-prefix=CHECK-PAR2
// RUN: mlir-opt %s -sparsification="parallelization-strategy=dense-any-loop" | \
// RUN: FileCheck %s --check-prefix=CHECK-PAR3
// RUN: mlir-opt %s -sparsification="parallelization-strategy=any-storage-any-loop" | \
// RUN: FileCheck %s --check-prefix=CHECK-PAR4
#DenseMatrix = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "dense" ]
@@ -151,7 +150,8 @@ func.func @scale_ss(%scale: f32,
//
// CHECK-PAR4-LABEL: func @matvec
// CHECK-PAR4: scf.parallel
// CHECK-PAR4: scf.for
// CHECK-PAR4: scf.parallel
// CHECK-PAR4: scf.reduce
// CHECK-PAR4: return
//
func.func @matvec(%arga: tensor<16x32xf32, #CSR>,

View File

@@ -0,0 +1,63 @@
// RUN: mlir-opt %s -sparsification="parallelization-strategy=any-storage-any-loop" | \
// RUN: FileCheck %s
#CSR = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ]
}>
#trait_matvec = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> (j)>, // b
affine_map<(i,j) -> (i)> // x (out)
],
iterator_types = ["parallel", "reduction"],
doc = "x(i) += A(i,j) * b(j)"
}
// CHECK-LABEL: func.func @matvec(
// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>>,
// CHECK-SAME: %[[TMP_arg1:.*]]: tensor<32xf32>,
// CHECK-SAME: %[[TMP_arg2:.*]]: tensor<16xf32>) -> tensor<16xf32> {
// CHECK-DAG: %[[TMP_c16:.*]] = arith.constant 16 : index
// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK: %[[TMP_0:.*]] = sparse_tensor.pointers %[[TMP_arg0]] {dimension = 1 : index}
// CHECK: %[[TMP_1:.*]] = sparse_tensor.indices %[[TMP_arg0]] {dimension = 1 : index}
// CHECK: %[[TMP_2:.*]] = sparse_tensor.values %[[TMP_arg0]]
// CHECK: %[[TMP_3:.*]] = bufferization.to_memref %[[TMP_arg1]] : memref<32xf32>
// CHECK: %[[TMP_4:.*]] = bufferization.to_memref %[[TMP_arg2]] : memref<16xf32>
// CHECK: scf.parallel (%[[TMP_arg3:.*]]) = (%[[TMP_c0]]) to (%[[TMP_c16]]) step (%[[TMP_c1]]) {
// CHECK: %[[TMP_6:.*]] = memref.load %[[TMP_4]][%[[TMP_arg3]]] : memref<16xf32>
// CHECK: %[[TMP_7:.*]] = memref.load %[[TMP_0]][%[[TMP_arg3]]] : memref<?xindex>
// CHECK: %[[TMP_8:.*]] = arith.addi %[[TMP_arg3]], %[[TMP_c1]] : index
// CHECK: %[[TMP_9:.*]] = memref.load %[[TMP_0]][%[[TMP_8]]] : memref<?xindex>
// CHECK: %[[TMP_10:.*]] = scf.parallel (%[[TMP_arg4:.*]]) = (%[[TMP_7]]) to (%[[TMP_9]]) step (%[[TMP_c1]]) init (%[[TMP_6]]) -> f32 {
// CHECK: %[[TMP_11:.*]] = memref.load %[[TMP_1]][%[[TMP_arg4]]] : memref<?xindex>
// CHECK: %[[TMP_12:.*]] = memref.load %[[TMP_2]][%[[TMP_arg4]]] : memref<?xf32>
// CHECK: %[[TMP_13:.*]] = memref.load %[[TMP_3]][%[[TMP_11]]] : memref<32xf32>
// CHECK: %[[TMP_14:.*]] = arith.mulf %[[TMP_12]], %[[TMP_13]] : f32
// CHECK: scf.reduce(%[[TMP_14]]) : f32 {
// CHECK: ^bb0(%[[TMP_arg5:.*]]: f32, %[[TMP_arg6:.*]]: f32):
// CHECK: %[[TMP_15:.*]] = arith.addf %[[TMP_arg5]], %[[TMP_arg6]] : f32
// CHECK: scf.reduce.return %[[TMP_15]] : f32
// CHECK: }
// CHECK: scf.yield
// CHECK: }
// CHECK: memref.store %[[TMP_10]], %[[TMP_4]][%[[TMP_arg3]]] : memref<16xf32>
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[TMP_5:.*]] = bufferization.to_tensor %[[TMP_4]] : memref<16xf32>
// CHECK: return %[[TMP_5]] : tensor<16xf32>
func.func @matvec(%arga: tensor<16x32xf32, #CSR>,
%argb: tensor<32xf32>,
%argx: tensor<16xf32>) -> tensor<16xf32> {
%0 = linalg.generic #trait_matvec
ins(%arga, %argb : tensor<16x32xf32, #CSR>, tensor<32xf32>)
outs(%argx: tensor<16xf32>) {
^bb(%A: f32, %b: f32, %x: f32):
%0 = arith.mulf %A, %b : f32
%1 = arith.addf %0, %x : f32
linalg.yield %1 : f32
} -> tensor<16xf32>
return %0 : tensor<16xf32>
}

View File

@@ -2,6 +2,14 @@
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
//
// Do the same run, but now with parallelization.
//
// RUN: mlir-opt %s --sparse-compiler="parallelization-strategy=any-storage-any-loop" | \
// RUN: mlir-cpu-runner -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
#CSR = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],

View File

@@ -4,6 +4,16 @@
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
//
// Do the same run, but now with parallelization.
//
// RUN: mlir-opt %s \
// RUN: --sparse-compiler="parallelization-strategy=any-storage-any-loop" | \
// RUN: TENSOR0="%mlir_src_dir/test/Integration/data/wide.mtx" \
// RUN: mlir-cpu-runner \
// RUN: -e entry -entry-point-result=void \
// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \
// RUN: FileCheck %s
!Filename = !llvm.ptr<i8>