Loop invariant code motion.

--

PiperOrigin-RevId: 244043679
This commit is contained in:
Amit Sabne
2019-04-17 12:18:37 -07:00
committed by Mehdi Amini
parent c9f21cf355
commit 7905da656e
4 changed files with 324 additions and 0 deletions

View File

@@ -83,6 +83,10 @@ FunctionPassBase *createLoopFusionPass(unsigned fastMemorySpace = 0,
uint64_t localBufSizeThreshold = 0,
bool maximalFusion = false);
/// Creates a loop invariant code motion pass that hoists loop invariant
/// instructions out of the loop.
FunctionPassBase *createLoopInvariantCodeMotionPass();
/// Creates a pass to pipeline explicit movement of data across levels of the
/// memory hierarchy.
FunctionPassBase *createPipelineDataTransferPass();

View File

@@ -5,6 +5,7 @@ add_llvm_library(MLIRTransforms
DialectConversion.cpp
DmaGeneration.cpp
LoopFusion.cpp
LoopInvariantCodeMotion.cpp
LoopTiling.cpp
LoopUnrollAndJam.cpp
LoopUnroll.cpp

View File

@@ -0,0 +1,130 @@
//===- LoopInvariantCodeMotion.cpp - Code to perform loop fusion-----------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements loop invariant code motion.
//
//===----------------------------------------------------------------------===//
#include <iomanip>
#include <sstream>
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "licm"
using llvm::SetVector;
using namespace mlir;
namespace {
/// Loop invariant code motion (LICM) pass.
/// TODO(asabne) : The pass is missing zero-trip tests.
/// TODO(asabne) : Check for the presence of side effects before hoisting.
struct LoopInvariantCodeMotion : public FunctionPass<LoopInvariantCodeMotion> {
void runOnFunction() override;
void runOnAffineForOp(AffineForOp forOp);
std::vector<AffineForOp> forOps;
};
} // end anonymous namespace
FunctionPassBase *mlir::createLoopInvariantCodeMotionPass() {
return new LoopInvariantCodeMotion();
}
void LoopInvariantCodeMotion::runOnAffineForOp(AffineForOp forOp) {
auto *loopBody = forOp.getBody();
// This is the place where hoisted instructions would reside.
FuncBuilder b(forOp.getOperation());
// This vector is used to place loop invariant operations.
SmallVector<Operation *, 8> opsToMove;
SetVector<Operation *> loopDefinedOps;
// Generate forward slice which contains ops that fall under the transitive
// definition closure following the loop induction variable.
getForwardSlice(forOp, &loopDefinedOps);
for (auto i : loopDefinedOps) {
LLVM_DEBUG(i->print(llvm::dbgs() << "\nLoop-dependent op\n"));
}
for (auto &op : *loopBody) {
// If the operation is loop invariant, insert it into opsToMove.
if (!op.isa<AffineForOp>() && !op.isa<AffineTerminatorOp>() &&
loopDefinedOps.count(&op) != 1) {
LLVM_DEBUG(op.print(llvm::dbgs() << "\nLICM'ing op\n"));
opsToMove.push_back(&op);
}
}
// For all instructions that we found to be invariant, place them sequentially
// right before the for loop.
for (auto *op : opsToMove) {
op->moveBefore(forOp);
}
LLVM_DEBUG(forOp.getOperation()->print(llvm::dbgs() << "\nModified loop\n"));
// If the for loop body has a single operation (the terminator), erase it.
if (forOp.getBody()->getOperations().size() == 1) {
assert(forOp.getBody()->getOperations().front().isa<AffineTerminatorOp>());
forOp.erase();
}
}
void LoopInvariantCodeMotion::runOnFunction() {
forOps.clear();
// Gather all loops in a function, and order them in innermost-loop-first
// order. This way, we first LICM from the inner loop, and place the ops in
// the outer loop, which in turn can be further LICM'ed. This saves iterating
// on the inner loop operations while LICMing through the outer loop.
getFunction().walk<AffineForOp>(
[&](AffineForOp forOp) { forOps.push_back(forOp); });
// We gather loops first, and then go over them later because we don't want to
// mess the iterators up.
for (auto forOp : forOps) {
auto *forInst = forOp.getOperation();
LLVM_DEBUG(forInst->print(llvm::dbgs() << "\nOriginal loop\n"));
runOnAffineForOp(forOp);
}
}
static PassRegistration<LoopInvariantCodeMotion>
pass("loop-invariant-code-motion",
"Hoist loop invariant instructions outside of the loop");

View File

@@ -0,0 +1,189 @@
// RUN: mlir-opt %s -loop-invariant-code-motion -split-input-file -verify | FileCheck %s
func @nested_loops_both_having_invariant_code() {
%m = alloc() : memref<10xf32>
%cf7 = constant 7.0 : f32
%cf8 = constant 8.0 : f32
affine.for %i0 = 0 to 10 {
%v0 = addf %cf7, %cf8 : f32
affine.for %i1 = 0 to 10 {
store %v0, %m[%i0] : memref<10xf32>
}
}
// CHECK: %0 = alloc() : memref<10xf32>
// CHECK-NEXT: %cst = constant 7.000000e+00 : f32
// CHECK-NEXT: %cst_0 = constant 8.000000e+00 : f32
// CHECK-NEXT: %1 = addf %cst, %cst_0 : f32
// CHECK-NEXT: affine.for %i0 = 0 to 10 {
// CHECK-NEXT: store %1, %0[%i0] : memref<10xf32>
// CHECK-NEXT: }
// CHECK-NEXT: return
return
}
// The store-load forwarding can see through affine apply's since it relies on
// dependence information.
// CHECK-LABEL: func @store_affine_apply
func @store_affine_apply() -> memref<10xf32> {
%cf7 = constant 7.0 : f32
%m = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
%t0 = affine.apply (d1) -> (d1 + 1)(%i0)
store %cf7, %m[%t0] : memref<10xf32>
}
return %m : memref<10xf32>
// CHECK: %cst = constant 7.000000e+00 : f32
// CHECK-NEXT: %0 = alloc() : memref<10xf32>
// CHECK-NEXT: affine.for %i0 = 0 to 10 {
// CHECK-NEXT: %1 = affine.apply #map2(%i0)
// CHECK-NEXT: store %cst, %0[%1] : memref<10xf32>
// CHECK-NEXT: }
// CHECK-NEXT: return %0 : memref<10xf32>
}
func @nested_loops_code_invariant_to_both() {
%m = alloc() : memref<10xf32>
%cf7 = constant 7.0 : f32
%cf8 = constant 8.0 : f32
affine.for %i0 = 0 to 10 {
affine.for %i1 = 0 to 10 {
%v0 = addf %cf7, %cf8 : f32
}
}
// CHECK: %0 = alloc() : memref<10xf32>
// CHECK-NEXT: %cst = constant 7.000000e+00 : f32
// CHECK-NEXT: %cst_0 = constant 8.000000e+00 : f32
// CHECK-NEXT: %1 = addf %cst, %cst_0 : f32
// CHECK-NEXT: return
return
}
func @single_loop_nothing_invariant() {
%m1 = alloc() : memref<10xf32>
%m2 = alloc() : memref<10xf32>
affine.for %i0 = 0 to 10 {
%v0 = load %m1[%i0] : memref<10xf32>
%v1 = load %m2[%i0] : memref<10xf32>
%v2 = addf %v0, %v1 : f32
store %v2, %m1[%i0] : memref<10xf32>
}
// CHECK: %0 = alloc() : memref<10xf32>
// CHECK-NEXT: %1 = alloc() : memref<10xf32>
// CHECK-NEXT: affine.for %i0 = 0 to 10 {
// CHECK-NEXT: %2 = load %0[%i0] : memref<10xf32>
// CHECK-NEXT: %3 = load %1[%i0] : memref<10xf32>
// CHECK-NEXT: %4 = addf %2, %3 : f32
// CHECK-NEXT: store %4, %0[%i0] : memref<10xf32>
// CHECK-NEXT: }
// CHECK-NEXT: return
return
}
func @invariant_code_inside_affine_if() {
%m = alloc() : memref<10xf32>
%cf8 = constant 8.0 : f32
affine.for %i0 = 0 to 10 {
%t0 = affine.apply (d1) -> (d1 + 1)(%i0)
affine.if (d0, d1) : (d1 - d0 >= 0) (%i0, %t0) {
%cf9 = addf %cf8, %cf8 : f32
store %cf9, %m[%i0] : memref<10xf32>
}
}
// CHECK: %0 = alloc() : memref<10xf32>
// CHECK-NEXT: %cst = constant 8.000000e+00 : f32
// CHECK-NEXT: affine.for %i0 = 0 to 10 {
// CHECK-NEXT: %1 = affine.apply #map2(%i0)
// CHECK-NEXT: affine.if #set0(%i0, %1) {
// CHECK-NEXT: %2 = addf %cst, %cst : f32
// CHECK-NEXT: store %2, %0[%i0] : memref<10xf32>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return
return
}
func @nested_loops_with_common_and_uncommon_invariant_code() {
%m = alloc() : memref<10xf32>
%cf7 = constant 7.0 : f32
%cf8 = constant 8.0 : f32
affine.for %i0 = 0 to 10 {
%v0 = addf %cf7, %cf8 : f32
affine.for %i1 = 0 to 10 {
%v1 = addf %cf7, %cf7 : f32
store %v0, %m[%i1] : memref<10xf32>
store %v0, %m[%i0] : memref<10xf32>
}
}
// CHECK: %0 = alloc() : memref<10xf32>
// CHECK-NEXT: %cst = constant 7.000000e+00 : f32
// CHECK-NEXT: %cst_0 = constant 8.000000e+00 : f32
// CHECK-NEXT: %1 = addf %cst, %cst_0 : f32
// CHECK-NEXT: %2 = addf %cst, %cst : f32
// CHECK-NEXT: affine.for %i0 = 0 to 10 {
// CHECK-NEXT: store %1, %0[%i0] : memref<10xf32>
// CHECK-NEXT: affine.for %i1 = 0 to 10 {
// CHECK-NEXT: store %1, %0[%i1] : memref<10xf32>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return
return
}
func @invariant_affine_if() {
%m = alloc() : memref<10xf32>
%cf8 = constant 8.0 : f32
affine.for %i0 = 0 to 10 {
affine.for %i1 = 0 to 10 {
affine.if (d0, d1) : (d1 - d0 >= 0) (%i0, %i0) {
%cf9 = addf %cf8, %cf8 : f32
store %cf9, %m[%i0] : memref<10xf32>
}
}
}
// CHECK: %0 = alloc() : memref<10xf32>
// CHECK-NEXT: %cst = constant 8.000000e+00 : f32
// CHECK-NEXT: affine.for %i0 = 0 to 10 {
// CHECK-NEXT: affine.if #set0(%i0, %i0) {
// CHECK-NEXT: %1 = addf %cst, %cst : f32
// CHECK-NEXT: store %1, %0[%i0] : memref<10xf32>
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: return
return
}
func @invariant_constant_and_load() {
%m = alloc() : memref<100xf32>
affine.for %i0 = 0 to 5 {
%c0 = constant 0 : index
%v = load %m[%c0] : memref<100xf32>
store %v, %m[%i0] : memref<100xf32>
}
// CHECK: %0 = alloc() : memref<100xf32>
// CHECK-NEXT: %c0 = constant 0 : index
// CHECK-NEXT: %1 = load %0[%c0] : memref<100xf32>
// CHECK-NEXT: affine.for %i0 = 0 to 5 {
// CHECK-NEXT: store %1, %0[%i0] : memref<100xf32>
// CHECK-NEXT: }
// CHECK-NEXT: return
return
}