Move code for symbol resolution from SymbolTable.cpp to Symbols.cpp.

My recent commits separated symbol resolution from the symbol table,
so the functions to resolve symbols are now in a somewhat wrong file.
This patch moves it to Symbols.cpp.

The functions are now member functions of the symbol.

This is code move change. I modified function names so that they are
appropriate as member functions, though. No functionality change
intended.

Differential Revision: https://reviews.llvm.org/D62290

llvm-svn: 361474
This commit is contained in:
Rui Ueyama
2019-05-23 09:58:08 +00:00
parent 4254840313
commit 7f7d2b2e62
7 changed files with 364 additions and 351 deletions

View File

@@ -1314,7 +1314,7 @@ static void handleUndefined(StringRef Name) {
Sym->IsUsedInRegularObj = true;
if (Sym->isLazy())
Symtab->fetchLazy(Sym);
Sym->fetch();
}
static void handleLibcall(StringRef Name) {
@@ -1329,7 +1329,7 @@ static void handleLibcall(StringRef Name) {
MB = cast<LazyArchive>(Sym)->getMemberBuffer();
if (isBitcode(MB))
Symtab->fetchLazy(Sym);
Sym->fetch();
}
// Replaces common symbols with defined symbols reside in .bss sections.

View File

@@ -963,8 +963,7 @@ template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
// Handle global undefined symbols.
if (ESym.st_shndx == SHN_UNDEF) {
resolveSymbol(this->Symbols[I],
Undefined{this, Name, Binding, StOther, Type});
this->Symbols[I]->resolve(Undefined{this, Name, Binding, StOther, Type});
continue;
}
@@ -973,8 +972,8 @@ template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
if (Value == 0 || Value >= UINT32_MAX)
fatal(toString(this) + ": common symbol '" + StringRef(Name.Data) +
"' has invalid alignment: " + Twine(Value));
resolveSymbol(this->Symbols[I], CommonSymbol{this, Name, Binding, StOther,
Type, Value, Size});
this->Symbols[I]->resolve(
CommonSymbol{this, Name, Binding, StOther, Type, Value, Size});
continue;
}
@@ -984,16 +983,16 @@ template <class ELFT> void ObjFile<ELFT>::initializeSymbols() {
// COMDAT member sections, and if a comdat group is discarded, some
// defined symbol in a .eh_frame becomes dangling symbols.
if (Sec == &InputSection::Discarded) {
resolveSymbol(this->Symbols[I],
Undefined{this, Name, Binding, StOther, Type, SecIdx});
this->Symbols[I]->resolve(
Undefined{this, Name, Binding, StOther, Type, SecIdx});
continue;
}
// Handle global defined symbols.
if (Binding == STB_GLOBAL || Binding == STB_WEAK ||
Binding == STB_GNU_UNIQUE) {
resolveSymbol(this->Symbols[I], Defined{this, Name, Binding, StOther,
Type, Value, Size, Sec});
this->Symbols[I]->resolve(
Defined{this, Name, Binding, StOther, Type, Value, Size, Sec});
continue;
}
@@ -1532,13 +1531,13 @@ template <class ELFT> void LazyObjFile::parse() {
// Replace existing symbols with LazyObject symbols.
//
// resolveSymbol() may trigger this->fetch() if an existing symbol
// is an undefined symbol. If that happens, this LazyObjFile has
// served its purpose, and we can exit from the loop early.
// resolve() may trigger this->fetch() if an existing symbol is an
// undefined symbol. If that happens, this LazyObjFile has served
// its purpose, and we can exit from the loop early.
for (Symbol *Sym : this->Symbols) {
if (!Sym)
continue;
resolveSymbol(Sym, LazyObject{*this, Sym->getName()});
Sym->resolve(LazyObject{*this, Sym->getName()});
if (AddedToLink)
return;
}

View File

@@ -185,7 +185,7 @@ void LinkerScript::addSymbol(SymbolAssignment *Cmd) {
0, Sec);
Symbol *Sym = Symtab->insert(Cmd->Name);
mergeSymbolProperties(Sym, New);
Sym->mergeProperties(New);
Sym->replace(New);
Cmd->Sym = cast<Defined>(Sym);
}
@@ -202,7 +202,7 @@ static void declareSymbol(SymbolAssignment *Cmd) {
// We can't calculate final value right now.
Symbol *Sym = Symtab->insert(Cmd->Name);
mergeSymbolProperties(Sym, New);
Sym->mergeProperties(New);
Sym->replace(New);
Cmd->Sym = cast<Defined>(Sym);

View File

@@ -55,14 +55,6 @@ void SymbolTable::wrap(Symbol *Sym, Symbol *Real, Symbol *Wrap) {
Real->setName(S);
}
static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
if (VA == STV_DEFAULT)
return VB;
if (VB == STV_DEFAULT)
return VA;
return std::min(VA, VB);
}
// Find an existing symbol or create a new one.
Symbol *SymbolTable::insert(StringRef Name) {
// <name>@@<version> means the symbol is the default version. In that
@@ -105,232 +97,9 @@ Symbol *SymbolTable::insert(StringRef Name) {
}
Symbol *SymbolTable::addSymbol(const Symbol &New) {
Symbol *Old = Symtab->insert(New.getName());
resolveSymbol(Old, New);
return Old;
}
static void addUndefined(Symbol *Old, const Undefined &New) {
// An undefined symbol with non default visibility must be satisfied
// in the same DSO.
//
// If this is a non-weak defined symbol in a discarded section, override the
// existing undefined symbol for better error message later.
if ((Old->isShared() && New.Visibility != STV_DEFAULT) ||
(Old->isUndefined() && New.Binding != STB_WEAK && New.DiscardedSecIdx)) {
Old->replace(New);
return;
}
if (Old->isShared() || Old->isLazy() ||
(Old->isUndefined() && New.Binding != STB_WEAK))
Old->Binding = New.Binding;
if (Old->isLazy()) {
// An undefined weak will not fetch archive members. See comment on Lazy in
// Symbols.h for the details.
if (New.Binding == STB_WEAK) {
Old->Type = New.Type;
return;
}
// Do extra check for --warn-backrefs.
//
// --warn-backrefs is an option to prevent an undefined reference from
// fetching an archive member written earlier in the command line. It can be
// used to keep compatibility with GNU linkers to some degree.
// I'll explain the feature and why you may find it useful in this comment.
//
// lld's symbol resolution semantics is more relaxed than traditional Unix
// linkers. For example,
//
// ld.lld foo.a bar.o
//
// succeeds even if bar.o contains an undefined symbol that has to be
// resolved by some object file in foo.a. Traditional Unix linkers don't
// allow this kind of backward reference, as they visit each file only once
// from left to right in the command line while resolving all undefined
// symbols at the moment of visiting.
//
// In the above case, since there's no undefined symbol when a linker visits
// foo.a, no files are pulled out from foo.a, and because the linker forgets
// about foo.a after visiting, it can't resolve undefined symbols in bar.o
// that could have been resolved otherwise.
//
// That lld accepts more relaxed form means that (besides it'd make more
// sense) you can accidentally write a command line or a build file that
// works only with lld, even if you have a plan to distribute it to wider
// users who may be using GNU linkers. With --warn-backrefs, you can detect
// a library order that doesn't work with other Unix linkers.
//
// The option is also useful to detect cyclic dependencies between static
// archives. Again, lld accepts
//
// ld.lld foo.a bar.a
//
// even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
// handled as an error.
//
// Here is how the option works. We assign a group ID to each file. A file
// with a smaller group ID can pull out object files from an archive file
// with an equal or greater group ID. Otherwise, it is a reverse dependency
// and an error.
//
// A file outside --{start,end}-group gets a fresh ID when instantiated. All
// files within the same --{start,end}-group get the same group ID. E.g.
//
// ld.lld A B --start-group C D --end-group E
//
// A forms group 0. B form group 1. C and D (including their member object
// files) form group 2. E forms group 3. I think that you can see how this
// group assignment rule simulates the traditional linker's semantics.
bool Backref = Config->WarnBackrefs && New.File &&
Old->File->GroupId < New.File->GroupId;
Symtab->fetchLazy(Old);
// We don't report backward references to weak symbols as they can be
// overridden later.
if (Backref && !Old->isWeak())
warn("backward reference detected: " + New.getName() + " in " +
toString(New.File) + " refers to " + toString(Old->File));
}
}
// Using .symver foo,foo@@VER unfortunately creates two symbols: foo and
// foo@@VER. We want to effectively ignore foo, so give precedence to
// foo@@VER.
// FIXME: If users can transition to using
// .symver foo,foo@@@VER
// we can delete this hack.
static int compareVersion(StringRef OldName, StringRef NewName) {
bool A = OldName.contains("@@");
bool B = NewName.contains("@@");
if (!A && B)
return 1;
if (A && !B)
return -1;
return 0;
}
// Compare two symbols. Return 1 if the new symbol should win, -1 if
// the new symbol should lose, or 0 if there is a conflict.
static int compare(const Symbol *Old, const Symbol *New) {
assert(New->isDefined() || New->isCommon());
if (!Old->isDefined() && !Old->isCommon())
return 1;
if (int Cmp = compareVersion(Old->getName(), New->getName()))
return Cmp;
if (New->isWeak())
return -1;
if (Old->isWeak())
return 1;
if (Old->isCommon() && New->isCommon()) {
if (Config->WarnCommon)
warn("multiple common of " + Old->getName());
return 0;
}
if (Old->isCommon()) {
if (Config->WarnCommon)
warn("common " + Old->getName() + " is overridden");
return 1;
}
if (New->isCommon()) {
if (Config->WarnCommon)
warn("common " + Old->getName() + " is overridden");
return -1;
}
auto *OldSym = cast<Defined>(Old);
auto *NewSym = cast<Defined>(New);
if (New->File && isa<BitcodeFile>(New->File))
return 0;
if (!OldSym->Section && !NewSym->Section && OldSym->Value == NewSym->Value &&
NewSym->Binding == STB_GLOBAL)
return -1;
return 0;
}
static void addCommon(Symbol *Old, const CommonSymbol &New) {
int Cmp = compare(Old, &New);
if (Cmp < 0)
return;
if (Cmp > 0) {
Old->replace(New);
return;
}
CommonSymbol *OldSym = cast<CommonSymbol>(Old);
OldSym->Alignment = std::max(OldSym->Alignment, New.Alignment);
if (OldSym->Size < New.Size) {
OldSym->File = New.File;
OldSym->Size = New.Size;
}
}
static void reportDuplicate(Symbol *Sym, InputFile *NewFile,
InputSectionBase *ErrSec, uint64_t ErrOffset) {
if (Config->AllowMultipleDefinition)
return;
Defined *D = cast<Defined>(Sym);
if (!D->Section || !ErrSec) {
error("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " +
toString(Sym->File) + "\n>>> defined in " + toString(NewFile));
return;
}
// Construct and print an error message in the form of:
//
// ld.lld: error: duplicate symbol: foo
// >>> defined at bar.c:30
// >>> bar.o (/home/alice/src/bar.o)
// >>> defined at baz.c:563
// >>> baz.o in archive libbaz.a
auto *Sec1 = cast<InputSectionBase>(D->Section);
std::string Src1 = Sec1->getSrcMsg(*Sym, D->Value);
std::string Obj1 = Sec1->getObjMsg(D->Value);
std::string Src2 = ErrSec->getSrcMsg(*Sym, ErrOffset);
std::string Obj2 = ErrSec->getObjMsg(ErrOffset);
std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at ";
if (!Src1.empty())
Msg += Src1 + "\n>>> ";
Msg += Obj1 + "\n>>> defined at ";
if (!Src2.empty())
Msg += Src2 + "\n>>> ";
Msg += Obj2;
error(Msg);
}
static void addDefined(Symbol *Old, const Defined &New) {
int Cmp = compare(Old, &New);
if (Cmp > 0)
Old->replace(New);
else if (Cmp == 0)
reportDuplicate(Old, New.File,
dyn_cast_or_null<InputSectionBase>(New.Section), New.Value);
}
static void addShared(Symbol *Old, const SharedSymbol &New) {
if (Old->Visibility == STV_DEFAULT && (Old->isUndefined() || Old->isLazy())) {
// An undefined symbol with non default visibility must be satisfied
// in the same DSO.
uint8_t Binding = Old->Binding;
Old->replace(New);
Old->Binding = Binding;
}
Symbol *Sym = Symtab->insert(New.getName());
Sym->resolve(New);
return Sym;
}
Symbol *SymbolTable::find(StringRef Name) {
@@ -342,44 +111,6 @@ Symbol *SymbolTable::find(StringRef Name) {
return SymVector[It->second];
}
template <class LazyT> static void addLazy(Symbol *Old, const LazyT &New) {
if (!Old->isUndefined())
return;
// An undefined weak will not fetch archive members. See comment on Lazy in
// Symbols.h for the details.
if (Old->isWeak()) {
uint8_t Type = Old->Type;
Old->replace(New);
Old->Type = Type;
Old->Binding = STB_WEAK;
return;
}
if (InputFile *F = New.fetch())
parseFile(F);
}
static void addLazyArchive(Symbol *Old, const LazyArchive &New) {
addLazy(Old, New);
}
static void addLazyObject(Symbol *Old, const LazyObject &New) {
addLazy(Old, New);
}
void SymbolTable::fetchLazy(Symbol *Sym) {
if (auto *S = dyn_cast<LazyArchive>(Sym)) {
if (InputFile *File = S->fetch())
parseFile(File);
return;
}
auto *S = cast<LazyObject>(Sym);
if (InputFile *File = cast<LazyObjFile>(S->File)->fetch())
parseFile(File);
}
// Initialize DemangledSyms with a map from demangled symbols to symbol
// objects. Used to handle "extern C++" directive in version scripts.
//
@@ -540,50 +271,3 @@ void SymbolTable::scanVersionScript() {
for (Symbol *Sym : SymVector)
Sym->parseSymbolVersion();
}
// Merge symbol properties.
//
// When we have many symbols of the same name, we choose one of them,
// and that's the result of symbol resolution. However, symbols that
// were not chosen still affect some symbol properties.
void elf::mergeSymbolProperties(Symbol *Old, const Symbol &New) {
// Merge symbol properties.
Old->ExportDynamic = Old->ExportDynamic || New.ExportDynamic;
Old->IsUsedInRegularObj = Old->IsUsedInRegularObj || New.IsUsedInRegularObj;
// DSO symbols do not affect visibility in the output.
if (!New.isShared())
Old->Visibility = getMinVisibility(Old->Visibility, New.Visibility);
}
void elf::resolveSymbol(Symbol *Old, const Symbol &New) {
mergeSymbolProperties(Old, New);
if (Old->isPlaceholder()) {
Old->replace(New);
return;
}
switch (New.kind()) {
case Symbol::UndefinedKind:
addUndefined(Old, cast<Undefined>(New));
break;
case Symbol::CommonKind:
addCommon(Old, cast<CommonSymbol>(New));
break;
case Symbol::DefinedKind:
addDefined(Old, cast<Defined>(New));
break;
case Symbol::LazyArchiveKind:
addLazyArchive(Old, cast<LazyArchive>(New));
break;
case Symbol::LazyObjectKind:
addLazyObject(Old, cast<LazyObject>(New));
break;
case Symbol::SharedKind:
addShared(Old, cast<SharedSymbol>(New));
break;
case Symbol::PlaceholderKind:
llvm_unreachable("bad symbol kind");
}
}

View File

@@ -47,8 +47,6 @@ public:
Symbol *addSymbol(const Symbol &New);
void fetchLazy(Symbol *Sym);
void scanVersionScript();
Symbol *find(StringRef Name);
@@ -94,9 +92,6 @@ private:
extern SymbolTable *Symtab;
void mergeSymbolProperties(Symbol *Old, const Symbol &New);
void resolveSymbol(Symbol *Old, const Symbol &New);
} // namespace elf
} // namespace lld

View File

@@ -241,8 +241,20 @@ void Symbol::parseSymbolVersion() {
Verstr);
}
InputFile *LazyArchive::fetch() const {
return cast<ArchiveFile>(File)->fetch(Sym);
void Symbol::fetch() const {
if (auto *Sym = dyn_cast<LazyArchive>(this)) {
if (auto *F = cast<ArchiveFile>(Sym->File)->fetch(Sym->Sym))
parseFile(F);
return;
}
if (auto *Sym = dyn_cast<LazyObject>(this)) {
if (auto *F = dyn_cast<LazyObjFile>(Sym->File)->fetch())
parseFile(F);
return;
}
llvm_unreachable("Symbol::fetch() is called on a non-lazy symbol");
}
MemoryBufferRef LazyArchive::getMemberBuffer() {
@@ -254,10 +266,6 @@ MemoryBufferRef LazyArchive::getMemberBuffer() {
Sym.getName());
}
InputFile *LazyObject::fetch() const {
return cast<LazyObjFile>(File)->fetch();
}
uint8_t Symbol::computeBinding() const {
if (Config->Relocatable)
return Binding;
@@ -338,3 +346,299 @@ std::string lld::toString(const Symbol &B) {
return *S;
return B.getName();
}
static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
if (VA == STV_DEFAULT)
return VB;
if (VB == STV_DEFAULT)
return VA;
return std::min(VA, VB);
}
// Merge symbol properties.
//
// When we have many symbols of the same name, we choose one of them,
// and that's the result of symbol resolution. However, symbols that
// were not chosen still affect some symbol properties.
void Symbol::mergeProperties(const Symbol &Other) {
if (Other.ExportDynamic)
ExportDynamic = true;
if (Other.IsUsedInRegularObj)
IsUsedInRegularObj = true;
// DSO symbols do not affect visibility in the output.
if (!Other.isShared())
Visibility = getMinVisibility(Visibility, Other.Visibility);
}
void Symbol::resolve(const Symbol &Other) {
mergeProperties(Other);
if (isPlaceholder()) {
replace(Other);
return;
}
switch (Other.kind()) {
case Symbol::UndefinedKind:
resolveUndefined(cast<Undefined>(Other));
break;
case Symbol::CommonKind:
resolveCommon(cast<CommonSymbol>(Other));
break;
case Symbol::DefinedKind:
resolveDefined(cast<Defined>(Other));
break;
case Symbol::LazyArchiveKind:
resolveLazy(cast<LazyArchive>(Other));
break;
case Symbol::LazyObjectKind:
resolveLazy(cast<LazyObject>(Other));
break;
case Symbol::SharedKind:
resolveShared(cast<SharedSymbol>(Other));
break;
case Symbol::PlaceholderKind:
llvm_unreachable("bad symbol kind");
}
}
void Symbol::resolveUndefined(const Undefined &Other) {
// An undefined symbol with non default visibility must be satisfied
// in the same DSO.
//
// If this is a non-weak defined symbol in a discarded section, override the
// existing undefined symbol for better error message later.
if ((isShared() && Other.Visibility != STV_DEFAULT) ||
(isUndefined() && Other.Binding != STB_WEAK && Other.DiscardedSecIdx)) {
replace(Other);
return;
}
if (isShared() || isLazy() || (isUndefined() && Other.Binding != STB_WEAK))
Binding = Other.Binding;
if (isLazy()) {
// An undefined weak will not fetch archive members. See comment on Lazy in
// Symbols.h for the details.
if (Other.Binding == STB_WEAK) {
Type = Other.Type;
return;
}
// Do extra check for --warn-backrefs.
//
// --warn-backrefs is an option to prevent an undefined reference from
// fetching an archive member written earlier in the command line. It can be
// used to keep compatibility with GNU linkers to some degree.
// I'll explain the feature and why you may find it useful in this comment.
//
// lld's symbol resolution semantics is more relaxed than traditional Unix
// linkers. For example,
//
// ld.lld foo.a bar.o
//
// succeeds even if bar.o contains an undefined symbol that has to be
// resolved by some object file in foo.a. Traditional Unix linkers don't
// allow this kind of backward reference, as they visit each file only once
// from left to right in the command line while resolving all undefined
// symbols at the moment of visiting.
//
// In the above case, since there's no undefined symbol when a linker visits
// foo.a, no files are pulled out from foo.a, and because the linker forgets
// about foo.a after visiting, it can't resolve undefined symbols in bar.o
// that could have been resolved otherwise.
//
// That lld accepts more relaxed form means that (besides it'd make more
// sense) you can accidentally write a command line or a build file that
// works only with lld, even if you have a plan to distribute it to wider
// users who may be using GNU linkers. With --warn-backrefs, you can detect
// a library order that doesn't work with other Unix linkers.
//
// The option is also useful to detect cyclic dependencies between static
// archives. Again, lld accepts
//
// ld.lld foo.a bar.a
//
// even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
// handled as an error.
//
// Here is how the option works. We assign a group ID to each file. A file
// with a smaller group ID can pull out object files from an archive file
// with an equal or greater group ID. Otherwise, it is a reverse dependency
// and an error.
//
// A file outside --{start,end}-group gets a fresh ID when instantiated. All
// files within the same --{start,end}-group get the same group ID. E.g.
//
// ld.lld A B --start-group C D --end-group E
//
// A forms group 0. B form group 1. C and D (including their member object
// files) form group 2. E forms group 3. I think that you can see how this
// group assignment rule simulates the traditional linker's semantics.
bool Backref = Config->WarnBackrefs && Other.File &&
File->GroupId < Other.File->GroupId;
fetch();
// We don't report backward references to weak symbols as they can be
// overridden later.
if (Backref && !isWeak())
warn("backward reference detected: " + Other.getName() + " in " +
toString(Other.File) + " refers to " + toString(File));
}
}
// Using .symver foo,foo@@VER unfortunately creates two symbols: foo and
// foo@@VER. We want to effectively ignore foo, so give precedence to
// foo@@VER.
// FIXME: If users can transition to using
// .symver foo,foo@@@VER
// we can delete this hack.
static int compareVersion(StringRef A, StringRef B) {
bool X = A.contains("@@");
bool Y = B.contains("@@");
if (!X && Y)
return 1;
if (X && !Y)
return -1;
return 0;
}
// Compare two symbols. Return 1 if the new symbol should win, -1 if
// the new symbol should lose, or 0 if there is a conflict.
int Symbol::compare(const Symbol *Other) const {
assert(Other->isDefined() || Other->isCommon());
if (!isDefined() && !isCommon())
return 1;
if (int Cmp = compareVersion(getName(), Other->getName()))
return Cmp;
if (Other->isWeak())
return -1;
if (isWeak())
return 1;
if (isCommon() && Other->isCommon()) {
if (Config->WarnCommon)
warn("multiple common of " + getName());
return 0;
}
if (isCommon()) {
if (Config->WarnCommon)
warn("common " + getName() + " is overridden");
return 1;
}
if (Other->isCommon()) {
if (Config->WarnCommon)
warn("common " + getName() + " is overridden");
return -1;
}
auto *OldSym = cast<Defined>(this);
auto *NewSym = cast<Defined>(Other);
if (Other->File && isa<BitcodeFile>(Other->File))
return 0;
if (!OldSym->Section && !NewSym->Section && OldSym->Value == NewSym->Value &&
NewSym->Binding == STB_GLOBAL)
return -1;
return 0;
}
static void reportDuplicate(Symbol *Sym, InputFile *NewFile,
InputSectionBase *ErrSec, uint64_t ErrOffset) {
if (Config->AllowMultipleDefinition)
return;
Defined *D = cast<Defined>(Sym);
if (!D->Section || !ErrSec) {
error("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " +
toString(Sym->File) + "\n>>> defined in " + toString(NewFile));
return;
}
// Construct and print an error message in the form of:
//
// ld.lld: error: duplicate symbol: foo
// >>> defined at bar.c:30
// >>> bar.o (/home/alice/src/bar.o)
// >>> defined at baz.c:563
// >>> baz.o in archive libbaz.a
auto *Sec1 = cast<InputSectionBase>(D->Section);
std::string Src1 = Sec1->getSrcMsg(*Sym, D->Value);
std::string Obj1 = Sec1->getObjMsg(D->Value);
std::string Src2 = ErrSec->getSrcMsg(*Sym, ErrOffset);
std::string Obj2 = ErrSec->getObjMsg(ErrOffset);
std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at ";
if (!Src1.empty())
Msg += Src1 + "\n>>> ";
Msg += Obj1 + "\n>>> defined at ";
if (!Src2.empty())
Msg += Src2 + "\n>>> ";
Msg += Obj2;
error(Msg);
}
void Symbol::resolveCommon(const CommonSymbol &Other) {
int Cmp = compare(&Other);
if (Cmp < 0)
return;
if (Cmp > 0) {
replace(Other);
return;
}
CommonSymbol *OldSym = cast<CommonSymbol>(this);
OldSym->Alignment = std::max(OldSym->Alignment, Other.Alignment);
if (OldSym->Size < Other.Size) {
OldSym->File = Other.File;
OldSym->Size = Other.Size;
}
}
void Symbol::resolveDefined(const Defined &Other) {
int Cmp = compare(&Other);
if (Cmp > 0)
replace(Other);
else if (Cmp == 0)
reportDuplicate(this, Other.File,
dyn_cast_or_null<InputSectionBase>(Other.Section),
Other.Value);
}
template <class LazyT> void Symbol::resolveLazy(const LazyT &Other) {
if (!isUndefined())
return;
// An undefined weak will not fetch archive members. See comment on Lazy in
// Symbols.h for the details.
if (isWeak()) {
uint8_t Ty = Type;
replace(Other);
Type = Ty;
Binding = STB_WEAK;
return;
}
Other.fetch();
}
void Symbol::resolveShared(const SharedSymbol &Other) {
if (Visibility == STV_DEFAULT && (isUndefined() || isLazy())) {
// An undefined symbol with non default visibility must be satisfied
// in the same DSO.
uint8_t Bind = Binding;
replace(Other);
Binding = Bind;
}
}

View File

@@ -22,8 +22,14 @@
namespace lld {
namespace elf {
class Symbol;
class CommonSymbol;
class Defined;
class InputFile;
class LazyArchive;
class LazyObject;
class SharedSymbol;
class Symbol;
class Undefined;
} // namespace elf
std::string toString(const elf::Symbol &);
@@ -174,6 +180,27 @@ public:
uint64_t getSize() const;
OutputSection *getOutputSection() const;
// The following two functions are used for symbol resolution.
//
// You are expected to call mergeProperties for all symbols in input
// files so that attributes that are attached to names rather than
// indivisual symbol (such as visibility) are merged together.
//
// Every time you read a new symbol from an input, you are supposed
// to call resolve() with the new symbol. That function replaces
// "this" object as a result of name resolution if the new symbol is
// more appropriate to be included in the output.
//
// For example, if "this" is an undefined symbol and a new symbol is
// a defined symbol, "this" is replaced with the new symbol.
void mergeProperties(const Symbol &Other);
void resolve(const Symbol &Other);
// If this is a lazy symbol, fetch an input file and add the symbol
// in the file to the symbol table. Calling this function on
// non-lazy object causes a runtime error.
void fetch() const;
private:
static bool isExportDynamic(Kind K, uint8_t Visibility) {
if (K == SharedKind)
@@ -181,6 +208,14 @@ private:
return Config->Shared || Config->ExportDynamic;
}
void resolveUndefined(const Undefined &Other);
void resolveCommon(const CommonSymbol &Other);
void resolveDefined(const Defined &Other);
template <class LazyT> void resolveLazy(const LazyT &Other);
void resolveShared(const SharedSymbol &Other);
int compare(const Symbol *Other) const;
inline size_t getSymbolSize() const;
protected:
@@ -351,10 +386,8 @@ public:
static bool classof(const Symbol *S) { return S->kind() == LazyArchiveKind; }
InputFile *fetch() const;
MemoryBufferRef getMemberBuffer();
private:
const llvm::object::Archive::Symbol Sym;
};
@@ -367,8 +400,6 @@ public:
llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
static bool classof(const Symbol *S) { return S->kind() == LazyObjectKind; }
InputFile *fetch() const;
};
// Some linker-generated symbols need to be created as