[MLIR] Add more logging to DenseAnalysis/DeaDCodeAnalysis/TestDenseBackwardDataFlowAnalysis (NFC) (#161503)

Just some more debugging help here, it may need more tweaking in the future.
This commit is contained in:
Mehdi Amini
2025-10-08 23:56:12 +01:00
committed by GitHub
parent 139a6bf0e4
commit 941492b6f6
3 changed files with 281 additions and 28 deletions

View File

@@ -522,14 +522,14 @@ void DeadCodeAnalysis::visitRegionBranchEdges(
// Mark the entry block as executable.
auto *state = getOrCreate<Executable>(point);
propagateIfChanged(state, state->setToLive());
LDBG() << "Marked region successor live: " << point;
LDBG() << "Marked region successor live: " << *point;
// Add the parent op as a predecessor.
auto *predecessors = getOrCreate<PredecessorState>(point);
propagateIfChanged(
predecessors,
predecessors->join(predecessorOp, successor.getSuccessorInputs()));
LDBG() << "Added region branch as predecessor for successor: " << point;
LDBG() << "Added region branch as predecessor for successor: " << *point;
}
}

View File

@@ -17,44 +17,74 @@
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/DebugLog.h"
#include <cassert>
#include <optional>
using namespace mlir;
using namespace mlir::dataflow;
#define DEBUG_TYPE "dense-analysis"
//===----------------------------------------------------------------------===//
// AbstractDenseForwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
void AbstractDenseForwardDataFlowAnalysis::initializeEquivalentLatticeAnchor(
Operation *top) {
LDBG() << "initializeEquivalentLatticeAnchor: "
<< OpWithFlags(top, OpPrintingFlags().skipRegions());
top->walk([&](Operation *op) {
if (isa<RegionBranchOpInterface, CallOpInterface>(op))
if (isa<RegionBranchOpInterface, CallOpInterface>(op)) {
LDBG() << " Skipping "
<< OpWithFlags(op, OpPrintingFlags().skipRegions())
<< " (region branch or call)";
return;
}
LDBG() << " Building equivalent lattice anchor for "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
buildOperationEquivalentLatticeAnchor(op);
});
}
LogicalResult AbstractDenseForwardDataFlowAnalysis::initialize(Operation *top) {
LDBG() << "initialize (forward): "
<< OpWithFlags(top, OpPrintingFlags().skipRegions());
// Visit every operation and block.
if (failed(processOperation(top)))
if (failed(processOperation(top))) {
LDBG() << " Failed to process top-level operation";
return failure();
}
for (Region &region : top->getRegions()) {
LDBG() << " Processing region with " << region.getBlocks().size()
<< " blocks";
for (Block &block : region) {
LDBG() << " Processing block with " << block.getOperations().size()
<< " operations";
visitBlock(&block);
for (Operation &op : block)
if (failed(initialize(&op)))
for (Operation &op : block) {
LDBG() << " Initializing operation: "
<< OpWithFlags(&op, OpPrintingFlags().skipRegions());
if (failed(initialize(&op))) {
LDBG() << " Failed to initialize operation";
return failure();
}
}
}
}
LDBG() << " Forward initialization completed successfully";
return success();
}
LogicalResult AbstractDenseForwardDataFlowAnalysis::visit(ProgramPoint *point) {
if (!point->isBlockStart())
LDBG() << "visit (forward): " << *point;
if (!point->isBlockStart()) {
LDBG() << " Processing operation: "
<< OpWithFlags(point->getPrevOp(), OpPrintingFlags().skipRegions());
return processOperation(point->getPrevOp());
}
LDBG() << " Visiting block: " << point->getBlock();
visitBlock(point->getBlock());
return success();
}
@@ -62,6 +92,11 @@ LogicalResult AbstractDenseForwardDataFlowAnalysis::visit(ProgramPoint *point) {
void AbstractDenseForwardDataFlowAnalysis::visitCallOperation(
CallOpInterface call, const AbstractDenseLattice &before,
AbstractDenseLattice *after) {
LDBG() << "visitCallOperation (forward): "
<< OpWithFlags(call.getOperation(), OpPrintingFlags().skipRegions());
LDBG() << " before state: " << before;
LDBG() << " after state: " << *after;
// Allow for customizing the behavior of calls to external symbols, including
// when the analysis is explicitly marked as non-interprocedural.
auto isExternalCallable = [&]() {
@@ -70,6 +105,7 @@ void AbstractDenseForwardDataFlowAnalysis::visitCallOperation(
return callable && !callable.getCallableRegion();
};
if (!getSolverConfig().isInterprocedural() || isExternalCallable()) {
LDBG() << " Handling as external callee (non-interprocedural or external)";
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, before, after);
}
@@ -78,10 +114,16 @@ void AbstractDenseForwardDataFlowAnalysis::visitCallOperation(
getProgramPointAfter(call.getOperation()), getProgramPointAfter(call));
// Otherwise, if not all return sites are known, then conservatively assume we
// can't reason about the data-flow.
if (!predecessors->allPredecessorsKnown())
if (!predecessors->allPredecessorsKnown()) {
LDBG() << " Not all predecessors known, setting to entry state";
return setToEntryState(after);
}
LDBG() << " Processing " << predecessors->getKnownPredecessors().size()
<< " known predecessors";
for (Operation *predecessor : predecessors->getKnownPredecessors()) {
LDBG() << " Processing predecessor: "
<< OpWithFlags(predecessor, OpPrintingFlags().skipRegions());
// Get the lattices at callee return:
//
// func.func @callee() {
@@ -99,6 +141,7 @@ void AbstractDenseForwardDataFlowAnalysis::visitCallOperation(
const AbstractDenseLattice *latticeAtCalleeReturn =
getLatticeFor(getProgramPointAfter(call.getOperation()),
getProgramPointAfter(predecessor));
LDBG() << " Lattice at callee return: " << *latticeAtCalleeReturn;
visitCallControlFlowTransfer(call, CallControlFlowAction::ExitCallee,
*latticeAtCalleeReturn, latticeAfterCall);
}
@@ -106,12 +149,16 @@ void AbstractDenseForwardDataFlowAnalysis::visitCallOperation(
LogicalResult
AbstractDenseForwardDataFlowAnalysis::processOperation(Operation *op) {
LDBG() << "processOperation (forward): "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
ProgramPoint *point = getProgramPointAfter(op);
// If the containing block is not executable, bail out.
if (op->getBlock() != nullptr &&
!getOrCreateFor<Executable>(point, getProgramPointBefore(op->getBlock()))
->isLive())
->isLive()) {
LDBG() << " Block not executable, skipping operation";
return success();
}
// Get the dense lattice to update.
AbstractDenseLattice *after = getLattice(point);
@@ -119,10 +166,13 @@ AbstractDenseForwardDataFlowAnalysis::processOperation(Operation *op) {
// Get the dense state before the execution of the op.
const AbstractDenseLattice *before =
getLatticeFor(point, getProgramPointBefore(op));
LDBG() << " before state: " << *before;
LDBG() << " after state: " << *after;
// If this op implements region control-flow, then control-flow dictates its
// transfer function.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
LDBG() << " Processing as region branch operation";
visitRegionBranchOperation(point, branch, after);
return success();
}
@@ -130,41 +180,57 @@ AbstractDenseForwardDataFlowAnalysis::processOperation(Operation *op) {
// If this is a call operation, then join its lattices across known return
// sites.
if (auto call = dyn_cast<CallOpInterface>(op)) {
LDBG() << " Processing as call operation";
visitCallOperation(call, *before, after);
return success();
}
// Invoke the operation transfer function.
LDBG() << " Invoking operation transfer function";
return visitOperationImpl(op, *before, after);
}
void AbstractDenseForwardDataFlowAnalysis::visitBlock(Block *block) {
LDBG() << "visitBlock (forward): " << block;
// If the block is not executable, bail out.
ProgramPoint *point = getProgramPointBefore(block);
if (!getOrCreateFor<Executable>(point, point)->isLive())
if (!getOrCreateFor<Executable>(point, point)->isLive()) {
LDBG() << " Block not executable, skipping";
return;
}
// Get the dense lattice to update.
AbstractDenseLattice *after = getLattice(point);
LDBG() << " Block lattice state: " << *after;
// The dense lattices of entry blocks are set by region control-flow or the
// callgraph.
if (block->isEntryBlock()) {
LDBG() << " Processing entry block";
// Check if this block is the entry block of a callable region.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
LDBG() << " Entry block of callable region";
const auto *callsites = getOrCreateFor<PredecessorState>(
point, getProgramPointAfter(callable));
// If not all callsites are known, conservatively mark all lattices as
// having reached their pessimistic fixpoints. Do the same if
// interprocedural analysis is not enabled.
if (!callsites->allPredecessorsKnown() ||
!getSolverConfig().isInterprocedural())
!getSolverConfig().isInterprocedural()) {
LDBG() << " Not all callsites known or non-interprocedural, setting "
"to entry state";
return setToEntryState(after);
}
LDBG() << " Processing " << callsites->getKnownPredecessors().size()
<< " known callsites";
for (Operation *callsite : callsites->getKnownPredecessors()) {
LDBG() << " Processing callsite: "
<< OpWithFlags(callsite, OpPrintingFlags().skipRegions());
// Get the dense lattice before the callsite.
const AbstractDenseLattice *before;
before = getLatticeFor(point, getProgramPointBefore(callsite));
LDBG() << " Lattice before callsite: " << *before;
visitCallControlFlowTransfer(cast<CallOpInterface>(callsite),
CallControlFlowAction::EnterCallee,
@@ -174,23 +240,32 @@ void AbstractDenseForwardDataFlowAnalysis::visitBlock(Block *block) {
}
// Check if we can reason about the control-flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp()))
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp())) {
LDBG() << " Entry block of region branch operation";
return visitRegionBranchOperation(point, branch, after);
}
// Otherwise, we can't reason about the data-flow.
LDBG() << " Cannot reason about data-flow, setting to entry state";
return setToEntryState(after);
}
// Join the state with the state after the block's predecessors.
LDBG() << " Joining state from "
<< std::distance(block->pred_begin(), block->pred_end())
<< " predecessors";
for (Block::pred_iterator it = block->pred_begin(), e = block->pred_end();
it != e; ++it) {
// Skip control edges that aren't executable.
Block *predecessor = *it;
if (!getOrCreateFor<Executable>(
point, getLatticeAnchor<CFGEdge>(predecessor, block))
->isLive())
->isLive()) {
LDBG() << " Skipping non-executable edge from " << predecessor;
continue;
}
LDBG() << " Joining state from predecessor " << predecessor;
// Merge in the state from the predecessor's terminator.
join(after, *getLatticeFor(
point, getProgramPointAfter(predecessor->getTerminator())));
@@ -200,20 +275,34 @@ void AbstractDenseForwardDataFlowAnalysis::visitBlock(Block *block) {
void AbstractDenseForwardDataFlowAnalysis::visitRegionBranchOperation(
ProgramPoint *point, RegionBranchOpInterface branch,
AbstractDenseLattice *after) {
LDBG() << "visitRegionBranchOperation (forward): "
<< OpWithFlags(branch.getOperation(), OpPrintingFlags().skipRegions());
LDBG() << " point: " << *point;
LDBG() << " after state: " << *after;
// Get the terminator predecessors.
const auto *predecessors = getOrCreateFor<PredecessorState>(point, point);
assert(predecessors->allPredecessorsKnown() &&
"unexpected unresolved region successors");
LDBG() << " Processing " << predecessors->getKnownPredecessors().size()
<< " known predecessors";
for (Operation *op : predecessors->getKnownPredecessors()) {
LDBG() << " Processing predecessor: "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
const AbstractDenseLattice *before;
// If the predecessor is the parent, get the state before the parent.
if (op == branch) {
LDBG() << " Predecessor is the branch itself, getting state before "
"parent";
before = getLatticeFor(point, getProgramPointBefore(op));
// Otherwise, get the state after the terminator.
} else {
LDBG()
<< " Predecessor is terminator, getting state after terminator";
before = getLatticeFor(point, getProgramPointAfter(op));
}
LDBG() << " before state: " << *before;
// This function is called in two cases:
// 1. when visiting the block (point = block start);
@@ -231,19 +320,31 @@ void AbstractDenseForwardDataFlowAnalysis::visitRegionBranchOperation(
std::optional<unsigned> regionFrom =
op == branch ? std::optional<unsigned>()
: op->getBlock()->getParent()->getRegionNumber();
LDBG() << " regionFrom: "
<< (regionFrom ? std::to_string(*regionFrom) : "parent");
if (point->isBlockStart()) {
unsigned regionTo = point->getBlock()->getParent()->getRegionNumber();
LDBG() << " Point is block start, regionTo: " << regionTo;
LDBG() << " Calling visitRegionBranchControlFlowTransfer with "
"regionFrom/regionTo";
visitRegionBranchControlFlowTransfer(branch, regionFrom, regionTo,
*before, after);
} else {
assert(point->getPrevOp() == branch &&
"expected to be visiting the branch itself");
LDBG() << " Point is not block start, checking if predecessor is "
"region or op itself";
// Only need to call the arc transfer when the predecessor is the region
// or the op itself, not the previous op.
if (op->getParentOp() == branch || op == branch) {
LDBG() << " Predecessor is region or op itself, calling "
"visitRegionBranchControlFlowTransfer";
visitRegionBranchControlFlowTransfer(
branch, regionFrom, /*regionTo=*/std::nullopt, *before, after);
} else {
LDBG()
<< " Predecessor is not region or op itself, performing join";
join(after, *before);
}
}
@@ -256,35 +357,61 @@ void AbstractDenseForwardDataFlowAnalysis::visitRegionBranchOperation(
void AbstractDenseBackwardDataFlowAnalysis::initializeEquivalentLatticeAnchor(
Operation *top) {
LDBG() << "initializeEquivalentLatticeAnchor (backward): "
<< OpWithFlags(top, OpPrintingFlags().skipRegions());
top->walk([&](Operation *op) {
if (isa<RegionBranchOpInterface, CallOpInterface>(op))
if (isa<RegionBranchOpInterface, CallOpInterface>(op)) {
LDBG() << " Skipping "
<< OpWithFlags(op, OpPrintingFlags().skipRegions())
<< " (region branch or call)";
return;
}
LDBG() << " Building equivalent lattice anchor for "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
buildOperationEquivalentLatticeAnchor(op);
});
}
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::initialize(Operation *top) {
LDBG() << "initialize (backward): "
<< OpWithFlags(top, OpPrintingFlags().skipRegions());
// Visit every operation and block.
if (failed(processOperation(top)))
if (failed(processOperation(top))) {
LDBG() << " Failed to process top-level operation";
return failure();
}
for (Region &region : top->getRegions()) {
LDBG() << " Processing region with " << region.getBlocks().size()
<< " blocks";
for (Block &block : region) {
LDBG() << " Processing block with " << block.getOperations().size()
<< " operations";
visitBlock(&block);
for (Operation &op : llvm::reverse(block)) {
if (failed(initialize(&op)))
LDBG() << " Initializing operation (backward): "
<< OpWithFlags(&op, OpPrintingFlags().skipRegions());
if (failed(initialize(&op))) {
LDBG() << " Failed to initialize operation";
return failure();
}
}
}
}
LDBG() << " Backward initialization completed successfully";
return success();
}
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::visit(ProgramPoint *point) {
if (!point->isBlockEnd())
LDBG() << "visit (backward): " << *point;
if (!point->isBlockEnd()) {
LDBG() << " Processing operation: "
<< OpWithFlags(point->getNextOp(), OpPrintingFlags().skipRegions());
return processOperation(point->getNextOp());
}
LDBG() << " Visiting block: " << point->getBlock();
visitBlock(point->getBlock());
return success();
}
@@ -292,28 +419,47 @@ AbstractDenseBackwardDataFlowAnalysis::visit(ProgramPoint *point) {
void AbstractDenseBackwardDataFlowAnalysis::visitCallOperation(
CallOpInterface call, const AbstractDenseLattice &after,
AbstractDenseLattice *before) {
LDBG() << "visitCallOperation (backward): "
<< OpWithFlags(call.getOperation(), OpPrintingFlags().skipRegions());
LDBG() << " after state: " << after;
LDBG() << " before state: " << *before;
// If the solver is not interprocedural, let the hook handle it as an external
// callee.
if (!getSolverConfig().isInterprocedural())
if (!getSolverConfig().isInterprocedural()) {
LDBG() << " Non-interprocedural analysis, handling as external callee";
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, after, before);
}
// Find the callee.
Operation *callee = call.resolveCallableInTable(&symbolTable);
if (callee) {
LDBG() << " Resolved callee: "
<< OpWithFlags(callee, OpPrintingFlags().skipRegions());
} else {
LDBG() << " Resolved callee: null";
}
auto callable = dyn_cast_or_null<CallableOpInterface>(callee);
// No region means the callee is only declared in this module.
// If that is the case or if the solver is not interprocedural,
// let the hook handle it.
if (callable &&
(!callable.getCallableRegion() || callable.getCallableRegion()->empty()))
if (callable && (!callable.getCallableRegion() ||
callable.getCallableRegion()->empty())) {
LDBG() << " Callee has no region or empty region, handling as external "
"callee";
return visitCallControlFlowTransfer(
call, CallControlFlowAction::ExternalCallee, after, before);
}
if (!callable)
if (!callable) {
LDBG() << " No callable found, setting to exit state";
return setToExitState(before);
}
Region *region = callable.getCallableRegion();
LDBG() << " Processing callable with region";
// Call-level control flow specifies the data flow here.
//
@@ -332,6 +478,7 @@ void AbstractDenseBackwardDataFlowAnalysis::visitCallOperation(
ProgramPoint *calleeEntry = getProgramPointBefore(calleeEntryBlock);
const AbstractDenseLattice &latticeAtCalleeEntry =
*getLatticeFor(getProgramPointBefore(call.getOperation()), calleeEntry);
LDBG() << " Lattice at callee entry: " << latticeAtCalleeEntry;
AbstractDenseLattice *latticeBeforeCall = before;
visitCallControlFlowTransfer(call, CallControlFlowAction::EnterCallee,
latticeAtCalleeEntry, latticeBeforeCall);
@@ -339,12 +486,16 @@ void AbstractDenseBackwardDataFlowAnalysis::visitCallOperation(
LogicalResult
AbstractDenseBackwardDataFlowAnalysis::processOperation(Operation *op) {
LDBG() << "processOperation (backward): "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
ProgramPoint *point = getProgramPointBefore(op);
// If the containing block is not executable, bail out.
if (op->getBlock() != nullptr &&
!getOrCreateFor<Executable>(point, getProgramPointBefore(op->getBlock()))
->isLive())
->isLive()) {
LDBG() << " Block not executable, skipping operation";
return success();
}
// Get the dense lattice to update.
AbstractDenseLattice *before = getLattice(point);
@@ -352,30 +503,39 @@ AbstractDenseBackwardDataFlowAnalysis::processOperation(Operation *op) {
// Get the dense state after execution of this op.
const AbstractDenseLattice *after =
getLatticeFor(point, getProgramPointAfter(op));
LDBG() << " before state: " << *before;
LDBG() << " after state: " << *after;
// Special cases where control flow may dictate data flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
LDBG() << " Processing as region branch operation";
visitRegionBranchOperation(point, branch, RegionBranchPoint::parent(),
before);
return success();
}
if (auto call = dyn_cast<CallOpInterface>(op)) {
LDBG() << " Processing as call operation";
visitCallOperation(call, *after, before);
return success();
}
// Invoke the operation transfer function.
LDBG() << " Invoking operation transfer function";
return visitOperationImpl(op, *after, before);
}
void AbstractDenseBackwardDataFlowAnalysis::visitBlock(Block *block) {
LDBG() << "visitBlock (backward): " << block;
ProgramPoint *point = getProgramPointAfter(block);
// If the block is not executable, bail out.
if (!getOrCreateFor<Executable>(point, getProgramPointBefore(block))
->isLive())
->isLive()) {
LDBG() << " Block not executable, skipping";
return;
}
AbstractDenseLattice *before = getLattice(point);
LDBG() << " Block lattice state: " << *before;
// We need "exit" blocks, i.e. the blocks that may return control to the
// parent operation.
@@ -391,23 +551,32 @@ void AbstractDenseBackwardDataFlowAnalysis::visitBlock(Block *block) {
b->getTerminator());
};
if (isExitBlock(block)) {
LDBG() << " Processing exit block";
// If this block is exiting from a callable, the successors of exiting from
// a callable are the successors of all call sites. And the call sites
// themselves are predecessors of the callable.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
LDBG() << " Exit block of callable region";
const auto *callsites = getOrCreateFor<PredecessorState>(
point, getProgramPointAfter(callable));
// If not all call sites are known, conservative mark all lattices as
// having reached their pessimistic fix points.
if (!callsites->allPredecessorsKnown() ||
!getSolverConfig().isInterprocedural()) {
LDBG() << " Not all callsites known or non-interprocedural, setting "
"to exit state";
return setToExitState(before);
}
LDBG() << " Processing " << callsites->getKnownPredecessors().size()
<< " known callsites";
for (Operation *callsite : callsites->getKnownPredecessors()) {
LDBG() << " Processing callsite: "
<< OpWithFlags(callsite, OpPrintingFlags().skipRegions());
const AbstractDenseLattice *after =
getLatticeFor(point, getProgramPointAfter(callsite));
LDBG() << " Lattice after callsite: " << *after;
visitCallControlFlowTransfer(cast<CallOpInterface>(callsite),
CallControlFlowAction::ExitCallee, *after,
before);
@@ -418,22 +587,29 @@ void AbstractDenseBackwardDataFlowAnalysis::visitBlock(Block *block) {
// If this block is exiting from an operation with region-based control
// flow, propagate the lattice back along the control flow edge.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp())) {
LDBG() << " Exit block of region branch operation";
visitRegionBranchOperation(point, branch, block->getParent(), before);
return;
}
// Cannot reason about successors of an exit block, set the pessimistic
// fixpoint.
LDBG() << " Cannot reason about successors, setting to exit state";
return setToExitState(before);
}
// Meet the state with the state before block's successors.
LDBG() << " Meeting state from " << block->getSuccessors().size()
<< " successors";
for (Block *successor : block->getSuccessors()) {
if (!getOrCreateFor<Executable>(point,
getLatticeAnchor<CFGEdge>(block, successor))
->isLive())
->isLive()) {
LDBG() << " Skipping non-executable edge to " << successor;
continue;
}
LDBG() << " Meeting state from successor " << successor;
// Merge in the state from the successor: either the first operation, or the
// block itself when empty.
meet(before, *getLatticeFor(point, getProgramPointBefore(successor)));
@@ -443,28 +619,39 @@ void AbstractDenseBackwardDataFlowAnalysis::visitBlock(Block *block) {
void AbstractDenseBackwardDataFlowAnalysis::visitRegionBranchOperation(
ProgramPoint *point, RegionBranchOpInterface branch,
RegionBranchPoint branchPoint, AbstractDenseLattice *before) {
LDBG() << "visitRegionBranchOperation (backward): "
<< OpWithFlags(branch.getOperation(), OpPrintingFlags().skipRegions());
LDBG() << " branchPoint: " << (branchPoint.isParent() ? "parent" : "region");
LDBG() << " before state: " << *before;
// The successors of the operation may be either the first operation of the
// entry block of each possible successor region, or the next operation when
// the branch is a successor of itself.
SmallVector<RegionSuccessor> successors;
branch.getSuccessorRegions(branchPoint, successors);
LDBG() << " Processing " << successors.size() << " successor regions";
for (const RegionSuccessor &successor : successors) {
const AbstractDenseLattice *after;
if (successor.isParent() || successor.getSuccessor()->empty()) {
LDBG() << " Successor is parent or empty region";
after = getLatticeFor(point, getProgramPointAfter(branch));
} else {
Region *successorRegion = successor.getSuccessor();
assert(!successorRegion->empty() && "unexpected empty successor region");
Block *successorBlock = &successorRegion->front();
LDBG() << " Successor region with "
<< successorRegion->getBlocks().size() << " blocks";
if (!getOrCreateFor<Executable>(point,
getProgramPointBefore(successorBlock))
->isLive())
->isLive()) {
LDBG() << " Successor block not executable, skipping";
continue;
}
after = getLatticeFor(point, getProgramPointBefore(successorBlock));
}
LDBG() << " After state: " << *after;
visitRegionBranchControlFlowTransfer(branch, branchPoint, successor, *after,
before);

View File

@@ -11,7 +11,6 @@
//===----------------------------------------------------------------------===//
#include "TestDenseDataFlowAnalysis.h"
#include "TestDialect.h"
#include "TestOps.h"
#include "mlir/Analysis/DataFlow/DenseAnalysis.h"
#include "mlir/Analysis/DataFlow/Utils.h"
@@ -23,12 +22,15 @@
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/TypeID.h"
#include "llvm/Support/DebugLog.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::dataflow;
using namespace mlir::dataflow::test;
#define DEBUG_TYPE "test-next-access"
namespace {
class NextAccess : public AbstractDenseLattice, public AccessLatticeBase {
@@ -72,6 +74,7 @@ public:
// means "we don't know what the next access is" rather than "there is no next
// access". But it's unclear how to differentiate the two cases...
void setToExitState(NextAccess *lattice) override {
LDBG() << "setToExitState: setting lattice to unknown state";
propagateIfChanged(lattice, lattice->setKnownToUnknown());
}
@@ -87,16 +90,23 @@ public:
LogicalResult NextAccessAnalysis::visitOperation(Operation *op,
const NextAccess &after,
NextAccess *before) {
LDBG() << "visitOperation: "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
LDBG() << " after state: " << after;
LDBG() << " before state: " << *before;
auto memory = dyn_cast<MemoryEffectOpInterface>(op);
// If we can't reason about the memory effects, conservatively assume we can't
// say anything about the next access.
if (!memory) {
LDBG() << " No memory effect interface, setting to exit state";
setToExitState(before);
return success();
}
SmallVector<MemoryEffects::EffectInstance> effects;
memory.getEffects(effects);
LDBG() << " Found " << effects.size() << " memory effects";
// First, check if all underlying values are already known. Otherwise, avoid
// propagating and stay in the "undefined" state to avoid incorrectly
@@ -110,6 +120,7 @@ LogicalResult NextAccessAnalysis::visitOperation(Operation *op,
// Effects with unspecified value are treated conservatively and we cannot
// assume anything about the next access.
if (!value) {
LDBG() << " Effect has unspecified value, setting to exit state";
setToExitState(before);
return success();
}
@@ -124,38 +135,63 @@ LogicalResult NextAccessAnalysis::visitOperation(Operation *op,
});
// If the underlying value is not known yet, don't propagate.
if (!underlyingValue)
if (!underlyingValue) {
LDBG() << " Underlying value not known for " << value
<< ", skipping propagation";
return success();
}
LDBG() << " Found underlying value " << *underlyingValue << " for "
<< value;
underlyingValues.push_back(*underlyingValue);
}
// Update the state if all underlying values are known.
LDBG() << " All underlying values known, updating state";
ChangeResult result = before->meet(after);
for (const auto &[effect, value] : llvm::zip(effects, underlyingValues)) {
// If the underlying value is known to be unknown, set to fixpoint.
if (!value) {
LDBG() << " Underlying value is unknown, setting to exit state";
setToExitState(before);
return success();
}
LDBG() << " Setting next access for value " << value << " to operation "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
result |= before->set(value, op);
}
LDBG() << " Final result: "
<< (result == ChangeResult::Change ? "changed" : "no change");
propagateIfChanged(before, result);
return success();
}
void NextAccessAnalysis::buildOperationEquivalentLatticeAnchor(Operation *op) {
LDBG() << "buildOperationEquivalentLatticeAnchor: "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
if (isMemoryEffectFree(op)) {
LDBG() << " Operation is memory effect free, unioning lattice anchors";
unionLatticeAnchors<NextAccess>(getProgramPointBefore(op),
getProgramPointAfter(op));
} else {
LDBG() << " Operation has memory effects, not unioning lattice anchors";
}
}
void NextAccessAnalysis::visitCallControlFlowTransfer(
CallOpInterface call, CallControlFlowAction action, const NextAccess &after,
NextAccess *before) {
LDBG() << "visitCallControlFlowTransfer: "
<< OpWithFlags(call.getOperation(), OpPrintingFlags().skipRegions());
LDBG() << " action: "
<< (action == CallControlFlowAction::ExternalCallee ? "ExternalCallee"
: action == CallControlFlowAction::EnterCallee ? "EnterCallee"
: "ExitCallee");
LDBG() << " assumeFuncReads: " << assumeFuncReads;
if (action == CallControlFlowAction::ExternalCallee && assumeFuncReads) {
LDBG() << " Handling external callee with assumed function reads";
SmallVector<Value> underlyingValues;
underlyingValues.reserve(call->getNumOperands());
for (Value operand : call.getArgOperands()) {
@@ -165,15 +201,26 @@ void NextAccessAnalysis::visitCallControlFlowTransfer(
return getOrCreateFor<UnderlyingValueLattice>(
getProgramPointBefore(call.getOperation()), value);
});
if (!underlyingValue)
if (!underlyingValue) {
LDBG() << " Underlying value not known for operand " << operand
<< ", returning";
return;
}
LDBG() << " Found underlying value " << *underlyingValue
<< " for operand " << operand;
underlyingValues.push_back(*underlyingValue);
}
LDBG() << " Setting next access for " << underlyingValues.size()
<< " operands";
ChangeResult result = before->meet(after);
for (Value operand : underlyingValues) {
LDBG() << " Setting next access for operand " << operand << " to call "
<< call;
result |= before->set(operand, call);
}
LDBG() << " Call control flow result: "
<< (result == ChangeResult::Change ? "changed" : "no change");
return propagateIfChanged(before, result);
}
auto testCallAndStore =
@@ -182,8 +229,10 @@ void NextAccessAnalysis::visitCallControlFlowTransfer(
testCallAndStore.getStoreBeforeCall()) ||
(action == CallControlFlowAction::ExitCallee &&
!testCallAndStore.getStoreBeforeCall()))) {
LDBG() << " Handling TestCallAndStoreOp with special logic";
(void)visitOperation(call, after, before);
} else {
LDBG() << " Using default call control flow transfer logic";
AbstractDenseBackwardDataFlowAnalysis::visitCallControlFlowTransfer(
call, action, after, before);
}
@@ -192,6 +241,11 @@ void NextAccessAnalysis::visitCallControlFlowTransfer(
void NextAccessAnalysis::visitRegionBranchControlFlowTransfer(
RegionBranchOpInterface branch, RegionBranchPoint regionFrom,
RegionBranchPoint regionTo, const NextAccess &after, NextAccess *before) {
LDBG() << "visitRegionBranchControlFlowTransfer: "
<< OpWithFlags(branch.getOperation(), OpPrintingFlags().skipRegions());
LDBG() << " regionFrom: " << (regionFrom.isParent() ? "parent" : "region");
LDBG() << " regionTo: " << (regionTo.isParent() ? "parent" : "region");
auto testStoreWithARegion =
dyn_cast<::test::TestStoreWithARegion>(branch.getOperation());
@@ -199,9 +253,11 @@ void NextAccessAnalysis::visitRegionBranchControlFlowTransfer(
((regionTo.isParent() && !testStoreWithARegion.getStoreBeforeRegion()) ||
(regionFrom.isParent() &&
testStoreWithARegion.getStoreBeforeRegion()))) {
LDBG() << " Handling TestStoreWithARegion with special logic";
(void)visitOperation(branch, static_cast<const NextAccess &>(after),
static_cast<NextAccess *>(before));
} else {
LDBG() << " Using default region branch control flow transfer logic";
propagateIfChanged(before, before->meet(after));
}
}
@@ -278,6 +334,11 @@ struct TestNextAccessPass
void runOnOperation() override {
Operation *op = getOperation();
LDBG() << "runOnOperation: Starting test-next-access pass on "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
LDBG() << " interprocedural: " << interprocedural;
LDBG() << " assumeFuncReads: " << assumeFuncReads;
SymbolTableCollection symbolTable;
auto config = DataFlowConfig().setInterprocedural(interprocedural);
@@ -285,15 +346,20 @@ struct TestNextAccessPass
loadBaselineAnalyses(solver);
solver.load<NextAccessAnalysis>(symbolTable, assumeFuncReads);
solver.load<UnderlyingValueAnalysis>();
LDBG() << " Initializing and running dataflow solver";
if (failed(solver.initializeAndRun(op))) {
emitError(op->getLoc(), "dataflow solver failed");
return signalPassFailure();
}
LDBG() << " Dataflow solver completed successfully";
LDBG() << " Walking operations to set next access attributes";
op->walk([&](Operation *op) {
auto tag = op->getAttrOfType<StringAttr>(kTagAttrName);
if (!tag)
return;
LDBG() << " Processing tagged operation: "
<< OpWithFlags(op, OpPrintingFlags().skipRegions());
const NextAccess *nextAccess =
solver.lookupState<NextAccess>(solver.getProgramPointAfter(op));
op->setAttr(kNextAccessAttrName,