[MLIR][XeGPU] add blocking support for reduce, broadcast, and transpose (#143389)

This PR adds blocking support for vector dialect operations (`reduce`,
`broadcast`, and `transpose`) in the XeGPU based IR. It simply assigned
the shape specified by "inst_data" as its target shape of the unrolling
to implement the blocking. It is based on
https://github.com/llvm/llvm-project/pull/140163.
This commit is contained in:
Jianhui Li
2025-06-10 08:50:26 -07:00
committed by GitHub
parent bdcbe67400
commit 9630d7cb92
2 changed files with 116 additions and 0 deletions

View File

@@ -169,6 +169,12 @@ XeGPUBlockingPass::getTileShape(Operation *op) const {
if (OpTrait::hasElementwiseMappableTraits(op) && op->getNumResults() == 1)
return getTileShape(op->getOpResult(0));
if (isa<vector::MultiDimReductionOp>(op))
return getTileShape(op->getOpOperand(0));
if (isa<vector::TransposeOp, vector::BroadcastOp>(op))
return getTileShape(op->getOpResult(0));
return std::nullopt;
}

View File

@@ -246,3 +246,113 @@ gpu.module @test_kernel {
gpu.return
}
}
// -----
#l = #xegpu.layout<inst_data = [16, 16]>
#r = #xegpu.layout<inst_data = [16]>
gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
gpu.func @reduce_dim_0(%a: memref<16x512xf32>, %b: memref<512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
%acc = arith.constant dense<0.0> : vector<64xf32>
%c64 = arith.constant 64 : index
%block_id_x = gpu.block_id x
%m = arith.muli %block_id_x, %c64 : index
%0 = xegpu.create_nd_tdesc %a[0, %m] : memref<16x512xf32> -> !xegpu.tensor_desc<16x64xf32, #l>
%1 = xegpu.load_nd %0: !xegpu.tensor_desc<16x64xf32, #l> -> vector<16x64xf32>
// CHECK: vector.multi_reduction <add>, {{.*}}, [[ACC:%[0-9A-Za-z]+]] [0] : vector<16x16xf32> to vector<16xf32>
// CHECK-COUNT-3: vector.multi_reduction <add>, {{.*}}, [[ACC]] [0] : vector<16x16xf32> to vector<16xf32>
%2 = vector.multi_reduction <add>, %1, %acc {layout_result_0 = #r} [0]: vector<16x64xf32> to vector<64xf32>
%3 = xegpu.create_nd_tdesc %b[%m] : memref<512xf32> -> !xegpu.tensor_desc<64xf32, #r>
xegpu.store_nd %2, %3: vector<64xf32>, !xegpu.tensor_desc<64xf32, #r>
gpu.return
}
}
// -----
#l = #xegpu.layout<inst_data = [16, 16]>
#r = #xegpu.layout<inst_data = [16]>
gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
gpu.func @reduce_dim_1(%a: memref<512x32xf32>, %b: memref<512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
%c1 = arith.constant 1 : index
%c32 = arith.constant 32 : index
%acc = arith.constant dense<0.0> : vector<32xf32>
%block_id_x = gpu.block_id x
%block_id_y = gpu.block_id y
%m = arith.muli %block_id_x, %c32 : index
%n = arith.muli %block_id_y, %c32 : index
%0 = xegpu.create_nd_tdesc %a[%m, %n] : memref<512x32xf32> -> !xegpu.tensor_desc<32x128xf32, #l>
%1 = xegpu.load_nd %0: !xegpu.tensor_desc<32x128xf32, #l> -> vector<32x128xf32>
// CHECK: vector.multi_reduction <add>, {{.*}}, [[INIT:%[0-9A-Za-z]+]] [1] : vector<16x16xf32> to vector<16xf32>
// CHECK-COUNT-1: vector.multi_reduction <add>, {{.*}}, [[INIT]] [1] : vector<16x16xf32> to vector<16xf32>
%2 = vector.multi_reduction <add>, %1, %acc {layout_result_0 = #r} [1]: vector<32x128xf32> to vector<32xf32>
%3 = xegpu.create_nd_tdesc %b[%n] : memref<512xf32> -> !xegpu.tensor_desc<32xf32, #r>
xegpu.store_nd %2, %3: vector<32xf32>, !xegpu.tensor_desc<32xf32, #r>
gpu.return
}
}
// -----
#r = #xegpu.layout<inst_data = [16]>
#l = #xegpu.layout<inst_data = [16, 16]>
gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
gpu.func @broadcast_dim_0(%a: memref<512xf32>, %b: memref<16x512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
%c64 = arith.constant 64 : index
%block_id_x = gpu.block_id x
%m = arith.muli %block_id_x, %c64 : index
%0 = xegpu.create_nd_tdesc %a[%m] : memref<512xf32> -> !xegpu.tensor_desc<64xf32, #r>
%1 = xegpu.load_nd %0: !xegpu.tensor_desc<64xf32, #r> -> vector<64xf32>
// CHECK-COUNT-4: vector.broadcast {{.*}} : vector<16xf32> to vector<16x16xf32>
%2 = vector.broadcast %1 {layout_result_0 = #l} : vector<64xf32> to vector<16x64xf32>
%3 = xegpu.create_nd_tdesc %b[0, %m] : memref<16x512xf32> -> !xegpu.tensor_desc<16x64xf32, #l>
xegpu.store_nd %2, %3: vector<16x64xf32>, !xegpu.tensor_desc<16x64xf32, #l>
gpu.return
}
}
// -----
#r = #xegpu.layout<inst_data = [16]>
#l = #xegpu.layout<inst_data = [16, 16]>
gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
gpu.func @broadcast_dim_1(%a: memref<512xf32>, %b: memref<16x512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
%c32 = arith.constant 32 : index
%block_id_x = gpu.block_id x
%m = arith.muli %block_id_x, %c32 : index
%0 = xegpu.create_nd_tdesc %a[%m] : memref<512xf32> -> !xegpu.tensor_desc<32xf32, #r>
%1 = xegpu.load_nd %0: !xegpu.tensor_desc<32xf32, #r> -> vector<32xf32>
%11 = vector.shape_cast %1 : vector<32xf32> to vector<32x1xf32>
// CHECK-COUNT-8: vector.broadcast {{.*}}: vector<16x1xf32> to vector<16x16xf32>
%2 = vector.broadcast %11 {layout_result_0 = #l} : vector<32x1xf32> to vector<32x64xf32>
%3 = xegpu.create_nd_tdesc %b[0, %m] : memref<16x512xf32> -> !xegpu.tensor_desc<32x64xf32, #l>
xegpu.store_nd %2, %3: vector<32x64xf32>, !xegpu.tensor_desc<32x64xf32, #l>
gpu.return
}
}
// -----
#l = #xegpu.layout<inst_data = [16, 8]>
#t = #xegpu.layout<inst_data = [8, 16]>
gpu.module @kernel attributes {spirv.target_env = #spirv.target_env<#spirv.vce<v1.4, [Addresses, Float16Buffer, Int64, Int16, Int8, Kernel, Linkage, Vector16, GenericPointer, Groups, Float16, Float64, AtomicFloat32AddEXT, ExpectAssumeKHR, SubgroupDispatch, VectorComputeINTEL, VectorAnyINTEL], [SPV_EXT_shader_atomic_float_add, SPV_KHR_expect_assume, SPV_INTEL_vector_compute]>, api=OpenCL, #spirv.resource_limits<>>} {
gpu.func @transpose(%a: memref<512x8xf32>, %b: memref<8x512xf32>) kernel attributes {VectorComputeFunctionINTEL, spirv.entry_point_abi = #spirv.entry_point_abi<>} {
%c32 = arith.constant 32 : index
%block_id_x = gpu.block_id x
%m = arith.muli %block_id_x, %c32 : index
%0 = xegpu.create_nd_tdesc %a[%m, 0] : memref<512x8xf32> -> !xegpu.tensor_desc<32x8xf32, #l>
%1 = xegpu.load_nd %0: !xegpu.tensor_desc<32x8xf32, #l> -> vector<32x8xf32>
// CHECK-COUNT-2: vector.transpose {{.*}} [1, 0] : vector<16x8xf32> to vector<8x16xf32>
%2 = vector.transpose %1, [1, 0] {layout_result_0 = #t} : vector<32x8xf32> to vector<8x32xf32>
%3 = xegpu.create_nd_tdesc %b[0, %m] : memref<8x512xf32> -> !xegpu.tensor_desc<8x32xf32, #t>
xegpu.store_nd %2, %3: vector<8x32xf32>, !xegpu.tensor_desc<8x32xf32, #t>
gpu.return
}
}