Lower vector transfer ops to loop.for operations.

This allows mixing linalg operations with vector transfer operations (with additional modifications to affine ops) and is a step towards solving tensorflow/mlir#189.

PiperOrigin-RevId: 275543361
This commit is contained in:
Nicolas Vasilache
2019-10-18 14:09:42 -07:00
committed by A. Unique TensorFlower
parent 2823b68580
commit 9e7e297da3
10 changed files with 52 additions and 41 deletions

View File

@@ -770,5 +770,5 @@ mlir::linalg::createLowerLinalgToLLVMPass() {
}
static PassRegistration<LowerLinalgToLLVMPass>
pass("linalg-convert-to-llvm",
pass("convert-linalg-to-llvm",
"Lower the operations from the linalg dialect into the LLVM dialect");

View File

@@ -320,7 +320,6 @@ categorizeValueByAffineType(MLIRContext *context, Value *val, unsigned &numDims,
d = getAffineSymbolExpr(numSymbols++, context);
resultVal = val;
} else {
assert(isValidDim(val) && "Must be a valid Dim");
d = getAffineDimExpr(numDims++, context);
resultVal = val;
}

View File

@@ -24,11 +24,8 @@ using namespace mlir::edsc;
static SmallVector<ValueHandle, 8> getMemRefSizes(Value *memRef) {
MemRefType memRefType = memRef->getType().cast<MemRefType>();
assert(isStrided(memRefType) && "Expected strided MemRef type");
auto maps = memRefType.getAffineMaps();
(void)maps;
assert((maps.empty() || (maps.size() == 1 && maps[0].isIdentity())) &&
"Layout maps not supported");
SmallVector<ValueHandle, 8> res;
res.reserve(memRefType.getShape().size());
const auto &shape = memRefType.getShape();

View File

@@ -25,6 +25,7 @@
#include "mlir/Analysis/NestedMatcher.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/EDSC/Builders.h"
@@ -54,9 +55,9 @@
/// // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into
/// // vector<32x256xf32> and pad with %f0 to handle the boundary case:
/// %f0 = constant 0.0f : f32
/// affine.for %i0 = 0 to %0 {
/// affine.for %i1 = 0 to %1 step 256 {
/// affine.for %i2 = 0 to %2 step 32 {
/// loop.for %i0 = 0 to %0 {
/// loop.for %i1 = 0 to %1 step %c256 {
/// loop.for %i2 = 0 to %2 step %c32 {
/// %v = vector.transfer_read %A[%i0, %i1, %i2], (%f0)
/// {permutation_map: (d0, d1, d2) -> (d2, d1)} :
/// memref<?x?x?xf32>, vector<32x256xf32>
@@ -68,8 +69,8 @@
/// abstraction):
///
/// ```mlir {.mlir}
/// affine.for %d2 = 0 to 256 {
/// affine.for %d1 = 0 to 32 {
/// loop.for %d2 = 0 to %c256 {
/// loop.for %d1 = 0 to %c32 {
/// %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32
/// %tmp[%d2, %d1] = %s
/// }
@@ -126,7 +127,7 @@ struct VectorTransferRewriter : public RewritePattern {
/// Analyzes the `transfer` to find an access dimension along the fastest remote
/// MemRef dimension. If such a dimension with coalescing properties is found,
/// `pivs` and `vectorView` are swapped so that the invocation of
/// AffineLoopNestBuilder captures it in the innermost loop.
/// LoopNestBuilder captures it in the innermost loop.
template <typename VectorTransferOpTy>
void coalesceCopy(VectorTransferOpTy transfer,
SmallVectorImpl<edsc::ValueHandle *> *pivs,
@@ -282,13 +283,16 @@ VectorTransferRewriter<VectorTransferReadOp>::matchAndRewrite(
auto lbs = vectorView.getLbs();
auto ubs = vectorView.getUbs();
auto steps = vectorView.getSteps();
SmallVector<ValueHandle, 8> steps;
steps.reserve(vectorView.getSteps().size());
for (auto step : vectorView.getSteps())
steps.push_back(constant_index(step));
// 2. Emit alloc-copy-load-dealloc.
ValueHandle tmp = alloc(tmpMemRefType(transfer));
IndexedValue local(tmp);
ValueHandle vec = vector_type_cast(tmp, vectorMemRefType(transfer));
AffineLoopNestBuilder(pivs, lbs, ubs, steps)([&] {
LoopNestBuilder(pivs, lbs, ubs, steps)([&] {
// Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
local(ivs) = remote(clip(transfer, view, ivs));
});
@@ -342,14 +346,17 @@ VectorTransferRewriter<VectorTransferWriteOp>::matchAndRewrite(
auto lbs = vectorView.getLbs();
auto ubs = vectorView.getUbs();
auto steps = vectorView.getSteps();
SmallVector<ValueHandle, 8> steps;
steps.reserve(vectorView.getSteps().size());
for (auto step : vectorView.getSteps())
steps.push_back(constant_index(step));
// 2. Emit alloc-store-copy-dealloc.
ValueHandle tmp = alloc(tmpMemRefType(transfer));
IndexedValue local(tmp);
ValueHandle vec = vector_type_cast(tmp, vectorMemRefType(transfer));
std_store(vectorValue, vec, {constant_index(0)});
AffineLoopNestBuilder(pivs, lbs, ubs, steps)([&] {
LoopNestBuilder(pivs, lbs, ubs, steps)([&] {
// Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
remote(clip(transfer, view, ivs)) = local(ivs);
});

View File

@@ -1,5 +1,5 @@
// RUN: mlir-opt %s -linalg-convert-to-llvm | FileCheck %s
// RUN: mlir-opt %s -linalg-lower-to-loops -linalg-convert-to-llvm | FileCheck %s --check-prefix=LLVM-LOOPS
// RUN: mlir-opt %s -convert-linalg-to-llvm | FileCheck %s
// RUN: mlir-opt %s -linalg-lower-to-loops -convert-linalg-to-llvm | FileCheck %s --check-prefix=LLVM-LOOPS
func @buffer_size(%arg0: !linalg.buffer<?xf32>) {
%c1 = constant 1 : index

View File

@@ -1,7 +1,7 @@
// RUN: mlir-opt %s -linalg-lower-to-loops | FileCheck %s
// Test that we can lower all the way to LLVM without crashing, don't check results here.
// RUN: mlir-opt %s --linalg-convert-to-llvm -o=/dev/null 2>&1
// RUN: mlir-opt %s --convert-linalg-to-llvm -o=/dev/null 2>&1
// CHECK-DAG: #[[strided1D:.*]] = (d0)[s0] -> (d0 + s0)
// CHECK-DAG: #[[strided2D:.*]] = (d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)

View File

@@ -1,7 +1,7 @@
// RUN: mlir-opt %s | mlir-opt | FileCheck %s
// Test that we can lower all the way to LLVM without crashing, don't check results here.
// RUN: mlir-opt %s --linalg-convert-to-llvm -o=/dev/null 2>&1
// RUN: mlir-opt %s --convert-linalg-to-llvm -o=/dev/null 2>&1
// CHECK-DAG: #[[strided1D:.*]] = (d0)[s0] -> (d0 + s0)
// CHECK-DAG: #[[strided2D:.*]] = (d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)

View File

@@ -53,8 +53,12 @@ func @materialize_read_1d_partially_specialized(%dyn1 : index, %dyn2 : index, %d
// CHECK-LABEL: func @materialize_read(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
func @materialize_read(%M: index, %N: index, %O: index, %P: index) {
// CHECK-NEXT: %[[C0:.*]] = constant 0 : index
// CHECK-NEXT: %{{.*}} = alloc(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) : memref<?x?x?x?xf32>
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
// CHECK-DAG: %[[C1:.*]] = constant 1 : index
// CHECK-DAG: %[[C3:.*]] = constant 3 : index
// CHECK-DAG: %[[C4:.*]] = constant 4 : index
// CHECK-DAG: %[[C5:.*]] = constant 5 : index
// CHECK: %{{.*}} = alloc(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) : memref<?x?x?x?xf32>
// CHECK-NEXT: affine.for %[[I0:.*]] = 0 to %{{.*}} step 3 {
// CHECK-NEXT: affine.for %[[I1:.*]] = 0 to %{{.*}} {
// CHECK-NEXT: affine.for %[[I2:.*]] = 0 to %{{.*}} {
@@ -65,9 +69,9 @@ func @materialize_read(%M: index, %N: index, %O: index, %P: index) {
// CHECK-NEXT: %[[D3:.*]] = dim %{{.*}}, 3 : memref<?x?x?x?xf32>
// CHECK: %[[ALLOC:.*]] = alloc() : memref<5x4x3xf32>
// CHECK-NEXT: %[[VECTOR_VIEW:.*]] = vector.type_cast %[[ALLOC]] : memref<5x4x3xf32>, memref<1xvector<5x4x3xf32>>
// CHECK-NEXT: affine.for %[[I4:.*]] = 0 to 3 {
// CHECK-NEXT: affine.for %[[I5:.*]] = 0 to 4 {
// CHECK-NEXT: affine.for %[[I6:.*]] = 0 to 5 {
// CHECK-NEXT: loop.for %[[I4:.*]] = %[[C0]] to %[[C3]] step %[[C1]] {
// CHECK-NEXT: loop.for %[[I5:.*]] = %[[C0]] to %[[C4]] step %[[C1]] {
// CHECK-NEXT: loop.for %[[I6:.*]] = %[[C0]] to %[[C5]] step %[[C1]] {
// CHECK-NEXT: {{.*}} = affine.apply #[[ADD]](%[[I0]], %[[I4]])
// CHECK-NEXT: {{.*}} = affine.apply #[[SUB]]()[%[[D0]]]
// CHECK-NEXT: {{.*}} = cmpi "slt", {{.*}} : index
@@ -126,9 +130,13 @@ func @materialize_read(%M: index, %N: index, %O: index, %P: index) {
// CHECK-LABEL:func @materialize_write(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
func @materialize_write(%M: index, %N: index, %O: index, %P: index) {
// CHECK-NEXT: %{{.*}} = constant dense<1.000000e+00> : vector<5x4x3xf32>
// CHECK-NEXT: %[[C0:.*]] = constant 0 : index
// CHECK-NEXT: %{{.*}} = alloc(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) : memref<?x?x?x?xf32>
// CHECK-DAG: %{{.*}} = constant dense<1.000000e+00> : vector<5x4x3xf32>
// CHECK-DAG: %[[C0:.*]] = constant 0 : index
// CHECK-DAG: %[[C1:.*]] = constant 1 : index
// CHECK-DAG: %[[C3:.*]] = constant 3 : index
// CHECK-DAG: %[[C4:.*]] = constant 4 : index
// CHECK-DAG: %[[C5:.*]] = constant 5 : index
// CHECK: %{{.*}} = alloc(%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}) : memref<?x?x?x?xf32>
// CHECK-NEXT: affine.for %[[I0:.*]] = 0 to %{{.*}} step 3 {
// CHECK-NEXT: affine.for %[[I1:.*]] = 0 to %{{.*}} step 4 {
// CHECK-NEXT: affine.for %[[I2:.*]] = 0 to %{{.*}} {
@@ -140,9 +148,9 @@ func @materialize_write(%M: index, %N: index, %O: index, %P: index) {
// CHECK: %[[ALLOC:.*]] = alloc() : memref<5x4x3xf32>
// CHECK-NEXT: %[[VECTOR_VIEW:.*]] = vector.type_cast {{.*}} : memref<5x4x3xf32>, memref<1xvector<5x4x3xf32>>
// CHECK: store %{{.*}}, {{.*}} : memref<1xvector<5x4x3xf32>>
// CHECK-NEXT: affine.for %[[I4:.*]] = 0 to 3 {
// CHECK-NEXT: affine.for %[[I5:.*]] = 0 to 4 {
// CHECK-NEXT: affine.for %[[I6:.*]] = 0 to 5 {
// CHECK-NEXT: loop.for %[[I4:.*]] = %[[C0]] to %[[C3]] step %[[C1]] {
// CHECK-NEXT: loop.for %[[I5:.*]] = %[[C0]] to %[[C4]] step %[[C1]] {
// CHECK-NEXT: loop.for %[[I6:.*]] = %[[C0]] to %[[C5]] step %[[C1]] {
// CHECK-NEXT: {{.*}} = affine.apply #[[ADD]](%[[I0]], %[[I4]])
// CHECK-NEXT: {{.*}} = affine.apply #[[SUB]]()[%[[D0]]]
// CHECK-NEXT: {{.*}} = cmpi "slt", {{.*}}, {{.*}} : index

View File

@@ -1,9 +1,9 @@
// RUN: mlir-opt %s -linalg-convert-to-llvm | mlir-cpu-runner -e dot -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-lower-to-loops -linalg-convert-to-llvm | mlir-cpu-runner -e dot -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-convert-to-llvm | mlir-cpu-runner -e matmul -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-lower-to-loops -linalg-convert-to-llvm | mlir-cpu-runner -e matmul -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-tile -linalg-tile-sizes=2,3,4 -linalg-promote-subviews -linalg-lower-to-loops -linalg-convert-to-llvm | mlir-cpu-runner -e matmul -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-tile -linalg-tile-sizes=2,3,4 -linalg-promote-subviews -linalg-convert-to-llvm | mlir-cpu-runner -e matmul -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -convert-linalg-to-llvm | mlir-cpu-runner -e dot -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-lower-to-loops -convert-linalg-to-llvm | mlir-cpu-runner -e dot -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -convert-linalg-to-llvm | mlir-cpu-runner -e matmul -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-lower-to-loops -convert-linalg-to-llvm | mlir-cpu-runner -e matmul -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-tile -linalg-tile-sizes=2,3,4 -linalg-promote-subviews -linalg-lower-to-loops -convert-linalg-to-llvm | mlir-cpu-runner -e matmul -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
// RUN: mlir-opt %s -linalg-tile -linalg-tile-sizes=2,3,4 -linalg-promote-subviews -convert-linalg-to-llvm | mlir-cpu-runner -e matmul -entry-point-result=f32 -shared-libs=%linalg_test_lib_dir/libcblas%shlibext,%linalg_test_lib_dir/libcblas_interface%shlibext | FileCheck %s
#strided1D = (d0)[s0] -> (d0 + s0)
#strided2D = (d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)

View File

@@ -1,7 +1,7 @@
// RUN: mlir-opt %s -linalg-lower-to-loops -linalg-convert-to-llvm -lower-to-llvm | mlir-cpu-runner -e print_0d -entry-point-result=void -shared-libs=%linalg_test_lib_dir/libmlir_runner_utils%shlibext | FileCheck %s --check-prefix=PRINT-0D
// RUN: mlir-opt %s -linalg-lower-to-loops -linalg-convert-to-llvm -lower-to-llvm | mlir-cpu-runner -e print_1d -entry-point-result=void -shared-libs=%linalg_test_lib_dir/libmlir_runner_utils%shlibext | FileCheck %s --check-prefix=PRINT-1D
// RUN: mlir-opt %s -linalg-lower-to-loops -linalg-convert-to-llvm -lower-to-llvm | mlir-cpu-runner -e print_3d -entry-point-result=void -shared-libs=%linalg_test_lib_dir/libmlir_runner_utils%shlibext | FileCheck %s --check-prefix=PRINT-3D
// RUN: mlir-opt %s -linalg-lower-to-loops -linalg-convert-to-llvm -lower-to-llvm | mlir-cpu-runner -e vector_splat_2d -entry-point-result=void -shared-libs=%linalg_test_lib_dir/libmlir_runner_utils%shlibext | FileCheck %s --check-prefix=PRINT-VECTOR-SPLAT-2D
// RUN: mlir-opt %s -linalg-lower-to-loops -convert-linalg-to-llvm -lower-to-llvm | mlir-cpu-runner -e print_0d -entry-point-result=void -shared-libs=%linalg_test_lib_dir/libmlir_runner_utils%shlibext | FileCheck %s --check-prefix=PRINT-0D
// RUN: mlir-opt %s -linalg-lower-to-loops -convert-linalg-to-llvm -lower-to-llvm | mlir-cpu-runner -e print_1d -entry-point-result=void -shared-libs=%linalg_test_lib_dir/libmlir_runner_utils%shlibext | FileCheck %s --check-prefix=PRINT-1D
// RUN: mlir-opt %s -linalg-lower-to-loops -convert-linalg-to-llvm -lower-to-llvm | mlir-cpu-runner -e print_3d -entry-point-result=void -shared-libs=%linalg_test_lib_dir/libmlir_runner_utils%shlibext | FileCheck %s --check-prefix=PRINT-3D
// RUN: mlir-opt %s -linalg-lower-to-loops -convert-linalg-to-llvm -lower-to-llvm | mlir-cpu-runner -e vector_splat_2d -entry-point-result=void -shared-libs=%linalg_test_lib_dir/libmlir_runner_utils%shlibext | FileCheck %s --check-prefix=PRINT-VECTOR-SPLAT-2D
func @print_0d() {
%f = constant 2.00000e+00 : f32