mirror of
https://github.com/intel/llvm.git
synced 2026-01-20 01:58:44 +08:00
[libc][math] Refactor exp2m1f implementation to header-only in src/__support/math folder. (#162017)
Part of #147386 in preparation for: https://discourse.llvm.org/t/rfc-make-clang-builtin-math-functions-constexpr-with-llvm-libc-to-support-c-23-constexpr-math-functions/86450
This commit is contained in:
committed by
GitHub
parent
212eb81073
commit
a55c4c812e
@@ -50,6 +50,7 @@
|
||||
#include "math/exp2.h"
|
||||
#include "math/exp2f.h"
|
||||
#include "math/exp2f16.h"
|
||||
#include "math/exp2m1f.h"
|
||||
#include "math/expf.h"
|
||||
#include "math/expf16.h"
|
||||
#include "math/frexpf.h"
|
||||
|
||||
23
libc/shared/math/exp2m1f.h
Normal file
23
libc/shared/math/exp2m1f.h
Normal file
@@ -0,0 +1,23 @@
|
||||
//===-- Shared exp2m1f function ---------------------------------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SHARED_MATH_EXP2M1F_H
|
||||
#define LLVM_LIBC_SHARED_MATH_EXP2M1F_H
|
||||
|
||||
#include "shared/libc_common.h"
|
||||
#include "src/__support/math/exp2m1f.h"
|
||||
|
||||
namespace LIBC_NAMESPACE_DECL {
|
||||
namespace shared {
|
||||
|
||||
using math::exp2m1f;
|
||||
|
||||
} // namespace shared
|
||||
} // namespace LIBC_NAMESPACE_DECL
|
||||
|
||||
#endif // LLVM_LIBC_SHARED_MATH_EXP2M1F_H
|
||||
@@ -751,6 +751,24 @@ add_header_library(
|
||||
libc.src.__support.macros.optimization
|
||||
)
|
||||
|
||||
add_header_library(
|
||||
exp2m1f
|
||||
HDRS
|
||||
exp2m1f.h
|
||||
DEPENDS
|
||||
.exp10f_utils
|
||||
libc.src.errno.errno
|
||||
libc.src.__support.common
|
||||
libc.src.__support.FPUtil.except_value_utils
|
||||
libc.src.__support.FPUtil.fenv_impl
|
||||
libc.src.__support.FPUtil.fp_bits
|
||||
libc.src.__support.FPUtil.multiply_add
|
||||
libc.src.__support.FPUtil.polyeval
|
||||
libc.src.__support.FPUtil.rounding_mode
|
||||
libc.src.__support.macros.optimization
|
||||
libc.src.__support.macros.properties.cpu_features
|
||||
)
|
||||
|
||||
add_header_library(
|
||||
exp10
|
||||
HDRS
|
||||
|
||||
195
libc/src/__support/math/exp2m1f.h
Normal file
195
libc/src/__support/math/exp2m1f.h
Normal file
@@ -0,0 +1,195 @@
|
||||
//===-- Implementation header for exp2m1f ------------------------*- C++-*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_EXP2M1F_H
|
||||
#define LLVM_LIBC_SRC___SUPPORT_MATH_EXP2M1F_H
|
||||
|
||||
#include "exp10f_utils.h"
|
||||
#include "src/__support/FPUtil/FEnvImpl.h"
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/__support/FPUtil/PolyEval.h"
|
||||
#include "src/__support/FPUtil/except_value_utils.h"
|
||||
#include "src/__support/FPUtil/multiply_add.h"
|
||||
#include "src/__support/FPUtil/rounding_mode.h"
|
||||
#include "src/__support/common.h"
|
||||
#include "src/__support/libc_errno.h"
|
||||
#include "src/__support/macros/config.h"
|
||||
#include "src/__support/macros/optimization.h"
|
||||
#include "src/__support/macros/properties/cpu_features.h"
|
||||
|
||||
namespace LIBC_NAMESPACE_DECL {
|
||||
|
||||
namespace math {
|
||||
|
||||
LIBC_INLINE static constexpr float exp2m1f(float x) {
|
||||
#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
constexpr size_t N_EXCEPTS_LO = 8;
|
||||
|
||||
constexpr fputil::ExceptValues<float, N_EXCEPTS_LO> EXP2M1F_EXCEPTS_LO = {{
|
||||
// (input, RZ output, RU offset, RD offset, RN offset)
|
||||
// x = 0x1.36dc8ep-36, exp2m1f(x) = 0x1.aef212p-37 (RZ)
|
||||
{0x2d9b'6e47U, 0x2d57'7909U, 1U, 0U, 0U},
|
||||
// x = 0x1.224936p-19, exp2m1f(x) = 0x1.926c0ep-20 (RZ)
|
||||
{0x3611'249bU, 0x35c9'3607U, 1U, 0U, 1U},
|
||||
// x = 0x1.d16d2p-20, exp2m1f(x) = 0x1.429becp-20 (RZ)
|
||||
{0x35e8'b690U, 0x35a1'4df6U, 1U, 0U, 1U},
|
||||
// x = 0x1.17949ep-14, exp2m1f(x) = 0x1.8397p-15 (RZ)
|
||||
{0x388b'ca4fU, 0x3841'cb80U, 1U, 0U, 1U},
|
||||
// x = -0x1.9c3e1ep-38, exp2m1f(x) = -0x1.1dbeacp-38 (RZ)
|
||||
{0xacce'1f0fU, 0xac8e'df56U, 0U, 1U, 0U},
|
||||
// x = -0x1.4d89b4p-32, exp2m1f(x) = -0x1.ce61b6p-33 (RZ)
|
||||
{0xafa6'c4daU, 0xaf67'30dbU, 0U, 1U, 1U},
|
||||
// x = -0x1.a6eac4p-10, exp2m1f(x) = -0x1.24fadap-10 (RZ)
|
||||
{0xbad3'7562U, 0xba92'7d6dU, 0U, 1U, 1U},
|
||||
// x = -0x1.e7526ep-6, exp2m1f(x) = -0x1.4e53dep-6 (RZ)
|
||||
{0xbcf3'a937U, 0xbca7'29efU, 0U, 1U, 1U},
|
||||
}};
|
||||
|
||||
constexpr size_t N_EXCEPTS_HI = 3;
|
||||
|
||||
constexpr fputil::ExceptValues<float, N_EXCEPTS_HI> EXP2M1F_EXCEPTS_HI = {{
|
||||
// (input, RZ output, RU offset, RD offset, RN offset)
|
||||
// x = 0x1.16a972p-1, exp2m1f(x) = 0x1.d545b2p-2 (RZ)
|
||||
{0x3f0b'54b9U, 0x3eea'a2d9U, 1U, 0U, 0U},
|
||||
// x = -0x1.9f12acp-5, exp2m1f(x) = -0x1.1ab68cp-5 (RZ)
|
||||
{0xbd4f'8956U, 0xbd0d'5b46U, 0U, 1U, 0U},
|
||||
// x = -0x1.de7b9cp-5, exp2m1f(x) = -0x1.4508f4p-5 (RZ)
|
||||
{0xbd6f'3dceU, 0xbd22'847aU, 0U, 1U, 1U},
|
||||
}};
|
||||
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
|
||||
using FPBits = fputil::FPBits<float>;
|
||||
FPBits xbits(x);
|
||||
|
||||
uint32_t x_u = xbits.uintval();
|
||||
uint32_t x_abs = x_u & 0x7fff'ffffU;
|
||||
|
||||
// When |x| >= 128, or x is nan, or |x| <= 2^-5
|
||||
if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) {
|
||||
// |x| <= 2^-5
|
||||
if (x_abs <= 0x3d00'0000U) {
|
||||
#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
if (auto r = EXP2M1F_EXCEPTS_LO.lookup(x_u); LIBC_UNLIKELY(r.has_value()))
|
||||
return r.value();
|
||||
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
|
||||
// Minimax polynomial generated by Sollya with:
|
||||
// > display = hexadecimal;
|
||||
// > fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]);
|
||||
constexpr double COEFFS[] = {
|
||||
0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3, 0x1.c6b08d6f2d7aap-5,
|
||||
0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13};
|
||||
double xd = x;
|
||||
double xsq = xd * xd;
|
||||
double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);
|
||||
double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);
|
||||
double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);
|
||||
double p = fputil::polyeval(xsq, c0, c1, c2);
|
||||
return static_cast<float>(p * xd);
|
||||
}
|
||||
|
||||
// x >= 128, or x is nan
|
||||
if (xbits.is_pos()) {
|
||||
if (xbits.is_finite()) {
|
||||
int rounding = fputil::quick_get_round();
|
||||
if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
|
||||
return FPBits::max_normal().get_val();
|
||||
|
||||
fputil::set_errno_if_required(ERANGE);
|
||||
fputil::raise_except_if_required(FE_OVERFLOW);
|
||||
}
|
||||
|
||||
// x >= 128 and 2^x - 1 rounds to +inf, or x is +inf or nan
|
||||
return x + FPBits::inf().get_val();
|
||||
}
|
||||
}
|
||||
|
||||
if (LIBC_UNLIKELY(x <= -25.0f)) {
|
||||
// 2^(-inf) - 1 = -1
|
||||
if (xbits.is_inf())
|
||||
return -1.0f;
|
||||
// 2^nan - 1 = nan
|
||||
if (xbits.is_nan())
|
||||
return x;
|
||||
|
||||
int rounding = fputil::quick_get_round();
|
||||
if (rounding == FE_UPWARD || rounding == FE_TOWARDZERO)
|
||||
return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f
|
||||
|
||||
fputil::set_errno_if_required(ERANGE);
|
||||
fputil::raise_except_if_required(FE_UNDERFLOW);
|
||||
return -1.0f;
|
||||
}
|
||||
|
||||
#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
if (auto r = EXP2M1F_EXCEPTS_HI.lookup(x_u); LIBC_UNLIKELY(r.has_value()))
|
||||
return r.value();
|
||||
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
|
||||
// For -25 < x < 128, to compute 2^x, we perform the following range
|
||||
// reduction: find hi, mid, lo such that:
|
||||
// x = hi + mid + lo, in which:
|
||||
// hi is an integer,
|
||||
// 0 <= mid * 2^5 < 32 is an integer,
|
||||
// -2^(-6) <= lo <= 2^(-6).
|
||||
// In particular,
|
||||
// hi + mid = round(x * 2^5) * 2^(-5).
|
||||
// Then,
|
||||
// 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo.
|
||||
// 2^mid is stored in the lookup table of 32 elements.
|
||||
// 2^lo is computed using a degree-4 minimax polynomial generated by Sollya.
|
||||
// We perform 2^hi * 2^mid by simply add hi to the exponent field of 2^mid.
|
||||
|
||||
// kf = (hi + mid) * 2^5 = round(x * 2^5)
|
||||
float kf = 0;
|
||||
int k = 0;
|
||||
#ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
|
||||
kf = fputil::nearest_integer(x * 32.0f);
|
||||
k = static_cast<int>(kf);
|
||||
#else
|
||||
constexpr float HALF[2] = {0.5f, -0.5f};
|
||||
k = static_cast<int>(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f]));
|
||||
kf = static_cast<float>(k);
|
||||
#endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
|
||||
|
||||
// lo = x - (hi + mid) = x - kf * 2^(-5)
|
||||
double lo = fputil::multiply_add(-0x1.0p-5f, kf, x);
|
||||
|
||||
// hi = floor(kf * 2^(-4))
|
||||
// exp2_hi = shift hi to the exponent field of double precision.
|
||||
int64_t exp2_hi =
|
||||
static_cast<int64_t>(static_cast<uint64_t>(k >> ExpBase::MID_BITS)
|
||||
<< fputil::FPBits<double>::FRACTION_LEN);
|
||||
// mh = 2^hi * 2^mid
|
||||
// mh_bits = bit field of mh
|
||||
int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp2_hi;
|
||||
double mh = fputil::FPBits<double>(static_cast<uint64_t>(mh_bits)).get_val();
|
||||
|
||||
// Degree-4 polynomial approximating (2^x - 1)/x generated by Sollya with:
|
||||
// > display = hexadecimal;
|
||||
// > fpminimax((2^x - 1)/x, 4, [|D...|], [-2^-6, 2^-6]);
|
||||
constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3,
|
||||
0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7,
|
||||
0x1.5d88091198529p-10};
|
||||
double lo_sq = lo * lo;
|
||||
double c1 = fputil::multiply_add(lo, COEFFS[0], 1.0);
|
||||
double c2 = fputil::multiply_add(lo, COEFFS[2], COEFFS[1]);
|
||||
double c3 = fputil::multiply_add(lo, COEFFS[4], COEFFS[3]);
|
||||
double exp2_lo = fputil::polyeval(lo_sq, c1, c2, c3);
|
||||
// 2^x - 1 = 2^(hi + mid + lo) - 1
|
||||
// = 2^(hi + mid) * 2^lo - 1
|
||||
// ~ mh * (1 + lo * P(lo)) - 1
|
||||
// = mh * exp2_lo - 1
|
||||
return static_cast<float>(fputil::multiply_add(exp2_lo, mh, -1.0));
|
||||
}
|
||||
|
||||
} // namespace math
|
||||
|
||||
} // namespace LIBC_NAMESPACE_DECL
|
||||
|
||||
#endif // LLVM_LIBC_SRC___SUPPORT_MATH_EXP2M1F_H
|
||||
@@ -1488,17 +1488,7 @@ add_entrypoint_object(
|
||||
HDRS
|
||||
../exp2m1f.h
|
||||
DEPENDS
|
||||
libc.src.errno.errno
|
||||
libc.src.__support.common
|
||||
libc.src.__support.FPUtil.except_value_utils
|
||||
libc.src.__support.FPUtil.fenv_impl
|
||||
libc.src.__support.FPUtil.fp_bits
|
||||
libc.src.__support.FPUtil.multiply_add
|
||||
libc.src.__support.FPUtil.polyeval
|
||||
libc.src.__support.FPUtil.rounding_mode
|
||||
libc.src.__support.macros.optimization
|
||||
libc.src.__support.macros.properties.cpu_features
|
||||
libc.src.__support.math.exp10f_utils
|
||||
libc.src.__support.math.exp2m1f
|
||||
)
|
||||
|
||||
add_entrypoint_object(
|
||||
|
||||
@@ -7,183 +7,10 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "src/math/exp2m1f.h"
|
||||
#include "src/__support/FPUtil/FEnvImpl.h"
|
||||
#include "src/__support/FPUtil/FPBits.h"
|
||||
#include "src/__support/FPUtil/PolyEval.h"
|
||||
#include "src/__support/FPUtil/except_value_utils.h"
|
||||
#include "src/__support/FPUtil/multiply_add.h"
|
||||
#include "src/__support/FPUtil/rounding_mode.h"
|
||||
#include "src/__support/common.h"
|
||||
#include "src/__support/libc_errno.h"
|
||||
#include "src/__support/macros/config.h"
|
||||
#include "src/__support/macros/optimization.h"
|
||||
#include "src/__support/macros/properties/cpu_features.h"
|
||||
#include "src/__support/math/exp10f_utils.h"
|
||||
#include "src/__support/math/exp2m1f.h"
|
||||
|
||||
namespace LIBC_NAMESPACE_DECL {
|
||||
|
||||
#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
static constexpr size_t N_EXCEPTS_LO = 8;
|
||||
|
||||
static constexpr fputil::ExceptValues<float, N_EXCEPTS_LO> EXP2M1F_EXCEPTS_LO =
|
||||
{{
|
||||
// (input, RZ output, RU offset, RD offset, RN offset)
|
||||
// x = 0x1.36dc8ep-36, exp2m1f(x) = 0x1.aef212p-37 (RZ)
|
||||
{0x2d9b'6e47U, 0x2d57'7909U, 1U, 0U, 0U},
|
||||
// x = 0x1.224936p-19, exp2m1f(x) = 0x1.926c0ep-20 (RZ)
|
||||
{0x3611'249bU, 0x35c9'3607U, 1U, 0U, 1U},
|
||||
// x = 0x1.d16d2p-20, exp2m1f(x) = 0x1.429becp-20 (RZ)
|
||||
{0x35e8'b690U, 0x35a1'4df6U, 1U, 0U, 1U},
|
||||
// x = 0x1.17949ep-14, exp2m1f(x) = 0x1.8397p-15 (RZ)
|
||||
{0x388b'ca4fU, 0x3841'cb80U, 1U, 0U, 1U},
|
||||
// x = -0x1.9c3e1ep-38, exp2m1f(x) = -0x1.1dbeacp-38 (RZ)
|
||||
{0xacce'1f0fU, 0xac8e'df56U, 0U, 1U, 0U},
|
||||
// x = -0x1.4d89b4p-32, exp2m1f(x) = -0x1.ce61b6p-33 (RZ)
|
||||
{0xafa6'c4daU, 0xaf67'30dbU, 0U, 1U, 1U},
|
||||
// x = -0x1.a6eac4p-10, exp2m1f(x) = -0x1.24fadap-10 (RZ)
|
||||
{0xbad3'7562U, 0xba92'7d6dU, 0U, 1U, 1U},
|
||||
// x = -0x1.e7526ep-6, exp2m1f(x) = -0x1.4e53dep-6 (RZ)
|
||||
{0xbcf3'a937U, 0xbca7'29efU, 0U, 1U, 1U},
|
||||
}};
|
||||
|
||||
static constexpr size_t N_EXCEPTS_HI = 3;
|
||||
|
||||
static constexpr fputil::ExceptValues<float, N_EXCEPTS_HI> EXP2M1F_EXCEPTS_HI =
|
||||
{{
|
||||
// (input, RZ output, RU offset, RD offset, RN offset)
|
||||
// x = 0x1.16a972p-1, exp2m1f(x) = 0x1.d545b2p-2 (RZ)
|
||||
{0x3f0b'54b9U, 0x3eea'a2d9U, 1U, 0U, 0U},
|
||||
// x = -0x1.9f12acp-5, exp2m1f(x) = -0x1.1ab68cp-5 (RZ)
|
||||
{0xbd4f'8956U, 0xbd0d'5b46U, 0U, 1U, 0U},
|
||||
// x = -0x1.de7b9cp-5, exp2m1f(x) = -0x1.4508f4p-5 (RZ)
|
||||
{0xbd6f'3dceU, 0xbd22'847aU, 0U, 1U, 1U},
|
||||
}};
|
||||
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
|
||||
LLVM_LIBC_FUNCTION(float, exp2m1f, (float x)) {
|
||||
using FPBits = fputil::FPBits<float>;
|
||||
FPBits xbits(x);
|
||||
|
||||
uint32_t x_u = xbits.uintval();
|
||||
uint32_t x_abs = x_u & 0x7fff'ffffU;
|
||||
|
||||
// When |x| >= 128, or x is nan, or |x| <= 2^-5
|
||||
if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) {
|
||||
// |x| <= 2^-5
|
||||
if (x_abs <= 0x3d00'0000U) {
|
||||
#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
if (auto r = EXP2M1F_EXCEPTS_LO.lookup(x_u); LIBC_UNLIKELY(r.has_value()))
|
||||
return r.value();
|
||||
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
|
||||
// Minimax polynomial generated by Sollya with:
|
||||
// > display = hexadecimal;
|
||||
// > fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]);
|
||||
constexpr double COEFFS[] = {
|
||||
0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3, 0x1.c6b08d6f2d7aap-5,
|
||||
0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13};
|
||||
double xd = x;
|
||||
double xsq = xd * xd;
|
||||
double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);
|
||||
double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);
|
||||
double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);
|
||||
double p = fputil::polyeval(xsq, c0, c1, c2);
|
||||
return static_cast<float>(p * xd);
|
||||
}
|
||||
|
||||
// x >= 128, or x is nan
|
||||
if (xbits.is_pos()) {
|
||||
if (xbits.is_finite()) {
|
||||
int rounding = fputil::quick_get_round();
|
||||
if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
|
||||
return FPBits::max_normal().get_val();
|
||||
|
||||
fputil::set_errno_if_required(ERANGE);
|
||||
fputil::raise_except_if_required(FE_OVERFLOW);
|
||||
}
|
||||
|
||||
// x >= 128 and 2^x - 1 rounds to +inf, or x is +inf or nan
|
||||
return x + FPBits::inf().get_val();
|
||||
}
|
||||
}
|
||||
|
||||
if (LIBC_UNLIKELY(x <= -25.0f)) {
|
||||
// 2^(-inf) - 1 = -1
|
||||
if (xbits.is_inf())
|
||||
return -1.0f;
|
||||
// 2^nan - 1 = nan
|
||||
if (xbits.is_nan())
|
||||
return x;
|
||||
|
||||
int rounding = fputil::quick_get_round();
|
||||
if (rounding == FE_UPWARD || rounding == FE_TOWARDZERO)
|
||||
return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f
|
||||
|
||||
fputil::set_errno_if_required(ERANGE);
|
||||
fputil::raise_except_if_required(FE_UNDERFLOW);
|
||||
return -1.0f;
|
||||
}
|
||||
|
||||
#ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
if (auto r = EXP2M1F_EXCEPTS_HI.lookup(x_u); LIBC_UNLIKELY(r.has_value()))
|
||||
return r.value();
|
||||
#endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
|
||||
|
||||
// For -25 < x < 128, to compute 2^x, we perform the following range
|
||||
// reduction: find hi, mid, lo such that:
|
||||
// x = hi + mid + lo, in which:
|
||||
// hi is an integer,
|
||||
// 0 <= mid * 2^5 < 32 is an integer,
|
||||
// -2^(-6) <= lo <= 2^(-6).
|
||||
// In particular,
|
||||
// hi + mid = round(x * 2^5) * 2^(-5).
|
||||
// Then,
|
||||
// 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo.
|
||||
// 2^mid is stored in the lookup table of 32 elements.
|
||||
// 2^lo is computed using a degree-4 minimax polynomial generated by Sollya.
|
||||
// We perform 2^hi * 2^mid by simply add hi to the exponent field of 2^mid.
|
||||
|
||||
// kf = (hi + mid) * 2^5 = round(x * 2^5)
|
||||
float kf;
|
||||
int k;
|
||||
#ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
|
||||
kf = fputil::nearest_integer(x * 32.0f);
|
||||
k = static_cast<int>(kf);
|
||||
#else
|
||||
constexpr float HALF[2] = {0.5f, -0.5f};
|
||||
k = static_cast<int>(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f]));
|
||||
kf = static_cast<float>(k);
|
||||
#endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
|
||||
|
||||
// lo = x - (hi + mid) = x - kf * 2^(-5)
|
||||
double lo = fputil::multiply_add(-0x1.0p-5f, kf, x);
|
||||
|
||||
// hi = floor(kf * 2^(-4))
|
||||
// exp2_hi = shift hi to the exponent field of double precision.
|
||||
int64_t exp2_hi =
|
||||
static_cast<int64_t>(static_cast<uint64_t>(k >> ExpBase::MID_BITS)
|
||||
<< fputil::FPBits<double>::FRACTION_LEN);
|
||||
// mh = 2^hi * 2^mid
|
||||
// mh_bits = bit field of mh
|
||||
int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp2_hi;
|
||||
double mh = fputil::FPBits<double>(static_cast<uint64_t>(mh_bits)).get_val();
|
||||
|
||||
// Degree-4 polynomial approximating (2^x - 1)/x generated by Sollya with:
|
||||
// > display = hexadecimal;
|
||||
// > fpminimax((2^x - 1)/x, 4, [|D...|], [-2^-6, 2^-6]);
|
||||
constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3,
|
||||
0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7,
|
||||
0x1.5d88091198529p-10};
|
||||
double lo_sq = lo * lo;
|
||||
double c1 = fputil::multiply_add(lo, COEFFS[0], 1.0);
|
||||
double c2 = fputil::multiply_add(lo, COEFFS[2], COEFFS[1]);
|
||||
double c3 = fputil::multiply_add(lo, COEFFS[4], COEFFS[3]);
|
||||
double exp2_lo = fputil::polyeval(lo_sq, c1, c2, c3);
|
||||
// 2^x - 1 = 2^(hi + mid + lo) - 1
|
||||
// = 2^(hi + mid) * 2^lo - 1
|
||||
// ~ mh * (1 + lo * P(lo)) - 1
|
||||
// = mh * exp2_lo - 1
|
||||
return static_cast<float>(fputil::multiply_add(exp2_lo, mh, -1.0));
|
||||
}
|
||||
LLVM_LIBC_FUNCTION(float, exp2m1f, (float x)) { return math::exp2m1f(x); }
|
||||
|
||||
} // namespace LIBC_NAMESPACE_DECL
|
||||
|
||||
@@ -43,6 +43,7 @@ add_fp_unittest(
|
||||
libc.src.__support.math.exp2
|
||||
libc.src.__support.math.exp2f
|
||||
libc.src.__support.math.exp2f16
|
||||
libc.src.__support.math.exp2m1f
|
||||
libc.src.__support.math.exp10
|
||||
libc.src.__support.math.exp10f
|
||||
libc.src.__support.math.exp10f16
|
||||
|
||||
@@ -61,6 +61,7 @@ TEST(LlvmLibcSharedMathTest, AllFloat) {
|
||||
EXPECT_FP_EQ(0x0p+0f, LIBC_NAMESPACE::shared::exp10m1f(0.0f));
|
||||
EXPECT_FP_EQ(0x0p+0f, LIBC_NAMESPACE::shared::erff(0.0f));
|
||||
EXPECT_FP_EQ(0x1p+0f, LIBC_NAMESPACE::shared::exp10f(0.0f));
|
||||
EXPECT_FP_EQ(0x0p+0f, LIBC_NAMESPACE::shared::exp2m1f(0.0f));
|
||||
EXPECT_FP_EQ(0x1p+0f, LIBC_NAMESPACE::shared::expf(0.0f));
|
||||
EXPECT_FP_EQ(0x1p+0f, LIBC_NAMESPACE::shared::exp2f(0.0f));
|
||||
|
||||
|
||||
@@ -2947,6 +2947,22 @@ libc_support_library(
|
||||
],
|
||||
)
|
||||
|
||||
libc_support_library(
|
||||
name = "__support_math_exp2m1f",
|
||||
hdrs = ["src/__support/math/exp2m1f.h"],
|
||||
deps = [
|
||||
":__support_fputil_except_value_utils",
|
||||
":__support_fputil_fma",
|
||||
":__support_fputil_multiply_add",
|
||||
":__support_fputil_nearest_integer",
|
||||
":__support_fputil_polyeval",
|
||||
":__support_fputil_rounding_mode",
|
||||
":__support_macros_optimization",
|
||||
":__support_math_common_constants",
|
||||
":__support_math_exp10f_utils",
|
||||
],
|
||||
)
|
||||
|
||||
libc_support_library(
|
||||
name = "__support_math_exp10",
|
||||
hdrs = ["src/__support/math/exp10.h"],
|
||||
@@ -3734,8 +3750,7 @@ libc_math_function(
|
||||
libc_math_function(
|
||||
name = "exp2m1f",
|
||||
additional_deps = [
|
||||
":__support_fputil_polyeval",
|
||||
":__support_math_exp10f_utils",
|
||||
":__support_math_exp2m1f",
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user