mirror of
https://github.com/intel/llvm.git
synced 2026-01-25 01:07:04 +08:00
[MLIR][Vector] Add Lowering for vector.step (#113655)
Currently, the lowering for vector.step lives under a folder. This is not ideal if we want to do transformation on it and defer the materizaliztion of the constants much later. This commits adds a rewrite pattern that could be used by using `transform.structured.vectorize_children_and_apply_patterns` transform dialect operation. Moreover, the rewriter of vector.step is also now used in -convert-vector-to-llvm pass where it handles scalable and non-scalable types as LLVM expects it. As a consequence of removing the vector.step lowering as its folder, linalg vectorization will keep vector.step intact.
This commit is contained in:
committed by
GitHub
parent
10a1ea9b53
commit
a6e72f9392
@@ -2946,7 +2946,6 @@ def Vector_StepOp : Vector_Op<"step", [Pure]> {
|
||||
%1 = vector.step : vector<[4]xindex> ; [0, 1, .., <vscale * 4 - 1>]
|
||||
```
|
||||
}];
|
||||
let hasFolder = 1;
|
||||
let results = (outs VectorOfRankAndType<[1], [Index]>:$result);
|
||||
let assemblyFormat = "attr-dict `:` type($result)";
|
||||
}
|
||||
|
||||
@@ -235,6 +235,13 @@ void populateVectorTransferPermutationMapLoweringPatterns(
|
||||
void populateVectorScanLoweringPatterns(RewritePatternSet &patterns,
|
||||
PatternBenefit benefit = 1);
|
||||
|
||||
/// Populate the pattern set with the following patterns:
|
||||
///
|
||||
/// [StepToArithConstantOp]
|
||||
/// Convert vector.step op into arith ops if not using scalable vectors
|
||||
void populateVectorStepLoweringPatterns(RewritePatternSet &patterns,
|
||||
PatternBenefit benefit = 1);
|
||||
|
||||
/// Populate the pattern set with the following patterns:
|
||||
///
|
||||
/// [FlattenGather]
|
||||
|
||||
@@ -1865,12 +1865,17 @@ struct VectorFromElementsLowering
|
||||
};
|
||||
|
||||
/// Conversion pattern for vector.step.
|
||||
struct VectorStepOpLowering : public ConvertOpToLLVMPattern<vector::StepOp> {
|
||||
struct VectorScalableStepOpLowering
|
||||
: public ConvertOpToLLVMPattern<vector::StepOp> {
|
||||
using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(vector::StepOp stepOp, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
auto resultType = cast<VectorType>(stepOp.getType());
|
||||
if (!resultType.isScalable()) {
|
||||
return failure();
|
||||
}
|
||||
Type llvmType = typeConverter->convertType(stepOp.getType());
|
||||
rewriter.replaceOpWithNewOp<LLVM::StepVectorOp>(stepOp, llvmType);
|
||||
return success();
|
||||
@@ -1886,6 +1891,7 @@ void mlir::populateVectorToLLVMConversionPatterns(
|
||||
MLIRContext *ctx = converter.getDialect()->getContext();
|
||||
patterns.add<VectorFMAOpNDRewritePattern>(ctx);
|
||||
populateVectorInsertExtractStridedSliceTransforms(patterns);
|
||||
populateVectorStepLoweringPatterns(patterns);
|
||||
patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
|
||||
patterns.add<VectorCreateMaskOpRewritePattern>(ctx, force32BitVectorIndices);
|
||||
patterns.add<VectorBitCastOpConversion, VectorShuffleOpConversion,
|
||||
@@ -1903,7 +1909,7 @@ void mlir::populateVectorToLLVMConversionPatterns(
|
||||
VectorScalableInsertOpLowering, VectorScalableExtractOpLowering,
|
||||
MaskedReductionOpConversion, VectorInterleaveOpLowering,
|
||||
VectorDeinterleaveOpLowering, VectorFromElementsLowering,
|
||||
VectorStepOpLowering>(converter);
|
||||
VectorScalableStepOpLowering>(converter);
|
||||
// Transfer ops with rank > 1 are handled by VectorToSCF.
|
||||
populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1);
|
||||
}
|
||||
|
||||
@@ -3488,6 +3488,7 @@ transform::VectorizeChildrenAndApplyPatternsOp::applyToOne(
|
||||
|
||||
if (getVectorizePadding())
|
||||
linalg::populatePadOpVectorizationPatterns(patterns);
|
||||
vector::populateVectorStepLoweringPatterns(patterns);
|
||||
|
||||
TrackingListener listener(state, *this);
|
||||
GreedyRewriteConfig config;
|
||||
|
||||
@@ -27,6 +27,7 @@
|
||||
#include "mlir/Dialect/SCF/IR/SCF.h"
|
||||
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
||||
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
||||
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
|
||||
#include "mlir/IR/Matchers.h"
|
||||
|
||||
using namespace mlir;
|
||||
@@ -664,6 +665,7 @@ void mlir::populateSparseVectorizationPatterns(RewritePatternSet &patterns,
|
||||
bool enableVLAVectorization,
|
||||
bool enableSIMDIndex32) {
|
||||
assert(vectorLength > 0);
|
||||
vector::populateVectorStepLoweringPatterns(patterns);
|
||||
patterns.add<ForOpRewriter>(patterns.getContext(), vectorLength,
|
||||
enableVLAVectorization, enableSIMDIndex32);
|
||||
patterns.add<ReducChainRewriter<vector::InsertElementOp>,
|
||||
|
||||
@@ -6423,20 +6423,6 @@ OpFoldResult SplatOp::fold(FoldAdaptor adaptor) {
|
||||
return SplatElementsAttr::get(getType(), {constOperand});
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// StepOp
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
OpFoldResult StepOp::fold(FoldAdaptor adaptor) {
|
||||
auto resultType = cast<VectorType>(getType());
|
||||
if (resultType.isScalable())
|
||||
return nullptr;
|
||||
SmallVector<APInt> indices;
|
||||
for (unsigned i = 0; i < resultType.getNumElements(); i++)
|
||||
indices.push_back(APInt(/*width=*/64, i));
|
||||
return DenseElementsAttr::get(resultType, indices);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// WarpExecuteOnLane0Op
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@@ -9,6 +9,7 @@ add_mlir_dialect_library(MLIRVectorTransforms
|
||||
LowerVectorMultiReduction.cpp
|
||||
LowerVectorScan.cpp
|
||||
LowerVectorShapeCast.cpp
|
||||
LowerVectorStep.cpp
|
||||
LowerVectorTransfer.cpp
|
||||
LowerVectorTranspose.cpp
|
||||
SubsetOpInterfaceImpl.cpp
|
||||
|
||||
49
mlir/lib/Dialect/Vector/Transforms/LowerVectorStep.cpp
Normal file
49
mlir/lib/Dialect/Vector/Transforms/LowerVectorStep.cpp
Normal file
@@ -0,0 +1,49 @@
|
||||
//===- LowerVectorStep.cpp - Lower 'vector.step' operation ----------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements target-independent rewrites and utilities to lower the
|
||||
// 'vector.step' operation.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/Dialect/Arith/IR/Arith.h"
|
||||
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
||||
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
|
||||
#include "mlir/IR/PatternMatch.h"
|
||||
|
||||
#define DEBUG_TYPE "vector-step-lowering"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::vector;
|
||||
|
||||
namespace {
|
||||
|
||||
struct StepToArithConstantOpRewrite final : OpRewritePattern<vector::StepOp> {
|
||||
using OpRewritePattern::OpRewritePattern;
|
||||
|
||||
LogicalResult matchAndRewrite(vector::StepOp stepOp,
|
||||
PatternRewriter &rewriter) const override {
|
||||
auto resultType = cast<VectorType>(stepOp.getType());
|
||||
if (resultType.isScalable()) {
|
||||
return failure();
|
||||
}
|
||||
int64_t elementCount = resultType.getNumElements();
|
||||
SmallVector<APInt> indices =
|
||||
llvm::map_to_vector(llvm::seq(elementCount),
|
||||
[](int64_t i) { return APInt(/*width=*/64, i); });
|
||||
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
|
||||
stepOp, DenseElementsAttr::get(resultType, indices));
|
||||
return success();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
void mlir::vector::populateVectorStepLoweringPatterns(
|
||||
RewritePatternSet &patterns, PatternBenefit benefit) {
|
||||
patterns.add<StepToArithConstantOpRewrite>(patterns.getContext(), benefit);
|
||||
}
|
||||
@@ -3448,3 +3448,13 @@ func.func @vector_step_scalable() -> vector<[4]xindex> {
|
||||
%0 = vector.step : vector<[4]xindex>
|
||||
return %0 : vector<[4]xindex>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @vector_step
|
||||
// CHECK: %[[CST:.+]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
|
||||
// CHECK: return %[[CST]] : vector<4xindex>
|
||||
func.func @vector_step() -> vector<4xindex> {
|
||||
%0 = vector.step : vector<4xindex>
|
||||
return %0 : vector<4xindex>
|
||||
}
|
||||
|
||||
@@ -144,43 +144,40 @@ module attributes {transform.with_named_sequence} {
|
||||
|
||||
// -----
|
||||
|
||||
#map = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
|
||||
func.func @vectorize_linalg_index(%arg0: tensor<3x3x?xf32>, %arg1: tensor<1x1x?xf32>) -> tensor<1x1x?xf32> {
|
||||
#map = affine_map<(d0) -> (d0)>
|
||||
func.func @vectorize_linalg_index(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> {
|
||||
%0 = linalg.generic {
|
||||
indexing_maps = [#map],
|
||||
iterator_types = ["parallel", "parallel", "parallel"]
|
||||
} outs(%arg1 : tensor<1x1x?xf32>) {
|
||||
iterator_types = ["parallel"]
|
||||
} outs(%arg1 : tensor<?xf32>) {
|
||||
^bb0(%in: f32):
|
||||
%1 = linalg.index 0 : index
|
||||
%2 = linalg.index 1 : index
|
||||
%3 = linalg.index 2 : index
|
||||
%4 = tensor.extract %arg0[%1, %2, %3] : tensor<3x3x?xf32>
|
||||
linalg.yield %4 : f32
|
||||
} -> tensor<1x1x?xf32>
|
||||
return %0 : tensor<1x1x?xf32>
|
||||
%2 = tensor.extract %arg0[%1] : tensor<?xf32>
|
||||
linalg.yield %2 : f32
|
||||
} -> tensor<?xf32>
|
||||
return %0 : tensor<?xf32>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: @vectorize_linalg_index
|
||||
// CHECK-SAME: %[[SRC:.*]]: tensor<3x3x?xf32>, %[[DST:.*]]: tensor<1x1x?xf32>
|
||||
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
|
||||
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
|
||||
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
|
||||
// CHECK: %[[DST_DIM2:.*]] = tensor.dim %[[DST]], %[[C2]] : tensor<1x1x?xf32>
|
||||
// CHECK: %[[MASK:.*]] = vector.create_mask %[[C1]], %[[C1]], %[[DST_DIM2]] : vector<1x1x[4]xi1>
|
||||
// CHECK: %[[INDEX_VEC:.*]] = vector.step : vector<[4]xindex>
|
||||
// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC]][%c0, %c0, %2], %cst {in_bounds = [true, true, true]} : tensor<3x3x?xf32>, vector<1x1x[4]xf32> } : vector<1x1x[4]xi1> -> vector<1x1x[4]xf32>
|
||||
// CHECK: %[[OUT:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[DST]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x[4]xf32>, tensor<1x1x?xf32> } : vector<1x1x[4]xi1> -> tensor<1x1x?xf32>
|
||||
// CHECK: return %[[OUT]] : tensor<1x1x?xf32>
|
||||
// CHECK-SAME: %[[SRC:.*]]: tensor<?xf32>, %[[DST:.*]]: tensor<?xf32>
|
||||
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
|
||||
// CHECK: %[[DST_DIM0:.*]] = tensor.dim %[[DST]], %[[C0]] : tensor<?xf32>
|
||||
// CHECK: %[[MASK:.*]] = vector.create_mask %[[DST_DIM0]] : vector<[4]xi1>
|
||||
// CHECK-DAG: %[[STEP:.+]] = vector.step : vector<[4]xindex>
|
||||
// CHECK-DAG: %[[STEP_ELEMENT:.+]] = vector.extractelement %[[STEP]][%c0_i32 : i32] : vector<[4]xindex>
|
||||
|
||||
// CHECK: %[[READ:.*]] = vector.mask %[[MASK]] { vector.transfer_read %[[SRC]][%[[STEP_ELEMENT]]], %cst {in_bounds = [true]} : tensor<?xf32>, vector<[4]xf32> } : vector<[4]xi1> -> vector<[4]xf32>
|
||||
// CHECK: %[[OUT:.*]] = vector.mask %[[MASK]] { vector.transfer_write %[[READ]], %[[DST]]{{\[}}%[[C0]]] {in_bounds = [true]} : vector<[4]xf32>, tensor<?xf32> } : vector<[4]xi1> -> tensor<?xf32>
|
||||
// CHECK: return %[[OUT]] : tensor<?xf32>
|
||||
|
||||
module attributes {transform.with_named_sequence} {
|
||||
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
|
||||
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
|
||||
transform.structured.vectorize %0 vector_sizes [1, 1, [4]] {vectorize_nd_extract} : !transform.any_op
|
||||
transform.structured.vectorize %0 vector_sizes [[4]] {vectorize_nd_extract} : !transform.any_op
|
||||
|
||||
%func = transform.structured.match ops{["func.func"]} in %arg1
|
||||
: (!transform.any_op) -> !transform.any_op
|
||||
transform.apply_patterns to %func {
|
||||
transform.apply_patterns.canonicalization
|
||||
transform.apply_patterns.linalg.tiling_canonicalization
|
||||
} : !transform.any_op
|
||||
transform.yield
|
||||
|
||||
@@ -2748,15 +2748,6 @@ func.func @from_elements_to_splat(%a: f32, %b: f32) -> (vector<2x3xf32>, vector<
|
||||
return %0, %1, %2 : vector<2x3xf32>, vector<2x3xf32>, vector<f32>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK-LABEL: @fold_vector_step_to_constant
|
||||
// CHECK: %[[CONSTANT:.*]] = arith.constant dense<[0, 1, 2, 3]> : vector<4xindex>
|
||||
// CHECK: return %[[CONSTANT]] : vector<4xindex>
|
||||
func.func @fold_vector_step_to_constant() -> vector<4xindex> {
|
||||
%0 = vector.step : vector<4xindex>
|
||||
return %0 : vector<4xindex>
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
|
||||
Reference in New Issue
Block a user