Thread Safety Analysis: Convert to minimal SSA.

llvm-svn: 206681
This commit is contained in:
DeLesley Hutchins
2014-04-19 03:54:41 +00:00
parent cd45dbc5f2
commit a9db0019a2
4 changed files with 135 additions and 38 deletions

View File

@@ -365,6 +365,7 @@ private:
LVarDefinitionMap CurrentLVarMap;
std::vector<til::Variable*> CurrentArguments;
std::vector<til::Variable*> CurrentInstructions;
std::vector<til::Variable*> IncompleteArgs;
til::BasicBlock *CurrentBB;
BlockInfo *CurrentBlockInfo;
};

View File

@@ -162,7 +162,7 @@ private:
// Contains various helper functions for SExprs.
namespace ThreadSafetyTIL {
inline bool isTrivial(SExpr *E) {
inline bool isTrivial(const SExpr *E) {
unsigned Op = E->opcode();
return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
}
@@ -209,6 +209,7 @@ public:
// Returns the definition (for let vars) or type (for parameter & self vars)
SExpr *definition() { return Definition.get(); }
const SExpr *definition() const { return Definition.get(); }
void attachVar() const { ++NumUses; }
void detachVar() const { assert(NumUses > 0); --NumUses; }
@@ -1107,6 +1108,15 @@ public:
// TODO: change to SExprRef
typedef SimpleArray<SExpr *> ValArray;
// In minimal SSA form, all Phi nodes are MultiVal.
// During conversion to SSA, incomplete Phi nodes may be introduced, which
// are later determined to be SingleVal.
enum Status {
PH_MultiVal = 0, // Phi node has multiple distinct values. (Normal)
PH_SingleVal, // Phi node has one distinct value, and can be eliminated
PH_Incomplete // Phi node is incomplete
};
static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
@@ -1116,14 +1126,8 @@ public:
const ValArray &values() const { return Values; }
ValArray &values() { return Values; }
// Incomplete phi nodes are constructed during SSA conversion, and
// may not be necessary.
bool incomplete() const { return Flags == 1; }
void setIncomplete(bool b) {
if (b) Flags = 1;
else Flags = 0;
}
Status status() const { return static_cast<Status>(Flags); }
void setStatus(Status s) { Flags = s; }
template <class V> typename V::R_SExpr traverse(V &Visitor) {
typename V::template Container<typename V::R_SExpr> Nvs(Visitor,
@@ -1222,6 +1226,12 @@ private:
};
SExpr *getCanonicalVal(SExpr *E);
void simplifyIncompleteArg(Variable *V, til::Phi *Ph);
} // end namespace til
} // end namespace threadSafety
} // end namespace clang

View File

@@ -505,16 +505,42 @@ protected:
}
void printLiteral(Literal *E, StreamType &SS) {
// TODO: actually pretty print the literal.
SS << "#lit";
const clang::Expr *CE = E->clangExpr();
switch (CE->getStmtClass()) {
case Stmt::IntegerLiteralClass:
SS << cast<IntegerLiteral>(CE)->getValue().toString(10, true);
return;
case Stmt::StringLiteralClass:
SS << "\"" << cast<StringLiteral>(CE)->getString() << "\"";
return;
case Stmt::CharacterLiteralClass:
case Stmt::CXXNullPtrLiteralExprClass:
case Stmt::GNUNullExprClass:
case Stmt::CXXBoolLiteralExprClass:
case Stmt::FloatingLiteralClass:
case Stmt::ImaginaryLiteralClass:
case Stmt::ObjCStringLiteralClass:
default:
SS << "#lit";
return;
}
}
void printLiteralPtr(LiteralPtr *E, StreamType &SS) {
SS << E->clangDecl()->getNameAsString();
}
void printVariable(Variable *E, StreamType &SS) {
void printVariable(Variable *E, StreamType &SS, bool IsVarDecl = false) {
SS << E->name() << E->getBlockID() << "_" << E->getID();
if (IsVarDecl)
return;
SExpr *V = getCanonicalVal(E);
if (V != E) {
SS << "{";
printSExpr(V, SS, Prec_MAX);
SS << "}";
}
}
void printFunction(Function *E, StreamType &SS, unsigned sugared = 0) {
@@ -528,7 +554,7 @@ protected:
SS << ", "; // Curried functions
break;
}
self()->printVariable(E->variableDecl(), SS);
self()->printVariable(E->variableDecl(), SS, true);
SS << ": ";
self()->printSExpr(E->variableDecl()->definition(), SS, Prec_MAX);
@@ -541,7 +567,7 @@ protected:
void printSFunction(SFunction *E, StreamType &SS) {
SS << "@";
self()->printVariable(E->variableDecl(), SS);
self()->printVariable(E->variableDecl(), SS, true);
SS << " ";
self()->printSExpr(E->body(), SS, Prec_Decl);
}
@@ -632,7 +658,7 @@ protected:
newline(SS);
for (auto A : BBI->arguments()) {
SS << "let ";
self()->printVariable(A, SS);
self()->printVariable(A, SS, true);
SS << " = ";
self()->printSExpr(A->definition(), SS, Prec_MAX);
SS << ";";
@@ -641,7 +667,7 @@ protected:
for (auto I : BBI->instructions()) {
if (I->definition()->opcode() != COP_Store) {
SS << "let ";
self()->printVariable(I, SS);
self()->printVariable(I, SS, true);
SS << " = ";
}
self()->printSExpr(I->definition(), SS, Prec_MAX);
@@ -663,11 +689,16 @@ protected:
void printPhi(Phi *E, StreamType &SS) {
SS << "phi(";
unsigned i = 0;
for (auto V : E->values()) {
if (i > 0)
SS << ", ";
self()->printSExpr(V, SS, Prec_MAX);
++i;
if (E->status() == Phi::PH_SingleVal) {
self()->printSExpr(E->values()[0], SS, Prec_MAX);
}
else {
for (auto V : E->values()) {
if (i > 0)
SS << ", ";
self()->printSExpr(V, SS, Prec_MAX);
++i;
}
}
SS << ")";
}

View File

@@ -36,6 +36,65 @@
namespace clang {
namespace threadSafety {
namespace til {
// If E is a variable, then trace back through any aliases or redundant
// Phi nodes to find the canonical definition.
SExpr *getCanonicalVal(SExpr *E) {
while (auto *V = dyn_cast<Variable>(E)) {
SExpr *D;
do {
if (V->kind() != Variable::VK_Let)
return V;
D = V->definition();
if (auto *V2 = dyn_cast<Variable>(D)) {
V = V2;
continue;
}
} while(false);
if (ThreadSafetyTIL::isTrivial(D))
return D;
if (Phi *Ph = dyn_cast<Phi>(D)) {
if (Ph->status() == Phi::PH_Incomplete)
simplifyIncompleteArg(V, Ph);
if (Ph->status() == Phi::PH_SingleVal) {
E = Ph->values()[0];
continue;
}
}
return V;
}
return E;
}
// Trace the arguments of an incomplete Phi node to see if they have the same
// canonical definition. If so, mark the Phi node as redundant.
// getCanonicalVal() will recursively call simplifyIncompletePhi().
void simplifyIncompleteArg(Variable *V, til::Phi *Ph) {
assert(!Ph && Ph->status() == Phi::PH_Incomplete);
// eliminate infinite recursion -- assume that this node is not redundant.
Ph->setStatus(Phi::PH_MultiVal);
SExpr *E0 = getCanonicalVal(Ph->values()[0]);
for (unsigned i=1, n=Ph->values().size(); i<n; ++i) {
SExpr *Ei = getCanonicalVal(Ph->values()[i]);
if (Ei == V)
continue; // Recursive reference to itself. Don't count.
if (Ei != E0) {
return; // Status is already set to MultiVal.
}
}
Ph->setStatus(Phi::PH_SingleVal);
}
} // end namespace til
typedef SExprBuilder::CallingContext CallingContext;
@@ -416,19 +475,6 @@ til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
}
// Return true if the given expression represents a possibly unnecessary
// variable: i.e. a variable that references a Phi node that may be removed.
inline bool isIncompleteVar(til::SExpr *E) {
if (!E)
return true; // Null values are used on unknown backedges.
if (til::Variable *V = dyn_cast<til::Variable>(E)) {
if (til::Phi *Ph = dyn_cast<til::Phi>(V->definition()))
return Ph->incomplete();
}
return false;
}
// Make a Phi node in the current block for the i^th variable in CurrentVarMap.
// If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
// If E == null, this is a backedge and will be set later.
@@ -444,8 +490,6 @@ void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
assert(Ph && "Expecting Phi node.");
if (E)
Ph->values()[ArgIndex] = E;
if (!Ph->incomplete() && isIncompleteVar(E))
Ph->setIncomplete(true);
return;
}
@@ -457,12 +501,16 @@ void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
Ph->values()[PIdx] = CurrentLVarMap[i].second;
if (E)
Ph->values()[ArgIndex] = E;
if (isIncompleteVar(E))
Ph->setIncomplete(true);
if (!E) {
// This is a non-minimal SSA node, which may be removed later.
Ph->setStatus(til::Phi::PH_Incomplete);
}
// Add Phi node to current block, and update CurrentLVarMap[i]
auto *Var = new (Arena) til::Variable(Ph, CurrentLVarMap[i].first);
CurrentArguments.push_back(Var);
if (Ph->status() == til::Phi::PH_Incomplete)
IncompleteArgs.push_back(Var);
CurrentLVarMap.makeWritable();
CurrentLVarMap.elem(i).second = Var;
@@ -680,8 +728,15 @@ void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
void SExprBuilder::exitCFG(const CFGBlock *Last) {
for (auto *V : IncompleteArgs) {
til::Phi *Ph = dyn_cast<til::Phi>(V->definition());
if (Ph && Ph->status() == til::Phi::PH_Incomplete)
simplifyIncompleteArg(V, Ph);
}
CurrentArguments.clear();
CurrentInstructions.clear();
IncompleteArgs.clear();
}