[flang][acc] Generate acc.bounds operation from FIR shape (#136637)

This PR adds support to be able to generate `acc.bounds` operation
through `MappableType`'s `generateAccBounds` when there is no fir.box
entity. This is especially useful because the FIR type does not capture
size information for explicit-shape arrays and current implementation
relied on finding the box entity.

This scenario is possible because during HLFIRtoFIR, `fir.array_coor`
and `fir.box_addr` operations are often optimized to use raw address. If
one tries to map the ssa value that represents such a variable, correct
dimensions need extracted from the shape information held in the fir
declare operation.
This commit is contained in:
Razvan Lupusoru
2025-04-22 09:30:49 -07:00
committed by GitHub
parent 4dbf67de40
commit b20e063a90
2 changed files with 134 additions and 9 deletions

View File

@@ -188,6 +188,77 @@ OpenACCMappableModel<fir::SequenceType>::generateAccBounds(
mlir::acc::DataBoundsType>(
firBuilder, loc, exv, info);
}
if (mlir::isa<hlfir::DeclareOp, fir::DeclareOp>(varPtr.getDefiningOp())) {
mlir::Value zero =
firBuilder.createIntegerConstant(loc, builder.getIndexType(), 0);
mlir::Value one =
firBuilder.createIntegerConstant(loc, builder.getIndexType(), 1);
mlir::Value shape;
if (auto declareOp =
mlir::dyn_cast_if_present<fir::DeclareOp>(varPtr.getDefiningOp()))
shape = declareOp.getShape();
else if (auto declareOp = mlir::dyn_cast_if_present<hlfir::DeclareOp>(
varPtr.getDefiningOp()))
shape = declareOp.getShape();
const bool strideIncludeLowerExtent = true;
llvm::SmallVector<mlir::Value> accBounds;
if (auto shapeOp =
mlir::dyn_cast_if_present<fir::ShapeOp>(shape.getDefiningOp())) {
mlir::Value cummulativeExtent = one;
for (auto extent : shapeOp.getExtents()) {
mlir::Value upperbound =
builder.create<mlir::arith::SubIOp>(loc, extent, one);
mlir::Value stride = one;
if (strideIncludeLowerExtent) {
stride = cummulativeExtent;
cummulativeExtent = builder.create<mlir::arith::MulIOp>(
loc, cummulativeExtent, extent);
}
auto accBound = builder.create<mlir::acc::DataBoundsOp>(
loc, mlir::acc::DataBoundsType::get(builder.getContext()),
/*lowerbound=*/zero, /*upperbound=*/upperbound,
/*extent=*/extent, /*stride=*/stride, /*strideInBytes=*/false,
/*startIdx=*/one);
accBounds.push_back(accBound);
}
} else if (auto shapeShiftOp =
mlir::dyn_cast_if_present<fir::ShapeShiftOp>(
shape.getDefiningOp())) {
mlir::Value lowerbound;
mlir::Value cummulativeExtent = one;
for (auto [idx, val] : llvm::enumerate(shapeShiftOp.getPairs())) {
if (idx % 2 == 0) {
lowerbound = val;
} else {
mlir::Value extent = val;
mlir::Value upperbound =
builder.create<mlir::arith::SubIOp>(loc, extent, one);
upperbound = builder.create<mlir::arith::AddIOp>(loc, lowerbound,
upperbound);
mlir::Value stride = one;
if (strideIncludeLowerExtent) {
stride = cummulativeExtent;
cummulativeExtent = builder.create<mlir::arith::MulIOp>(
loc, cummulativeExtent, extent);
}
auto accBound = builder.create<mlir::acc::DataBoundsOp>(
loc, mlir::acc::DataBoundsType::get(builder.getContext()),
/*lowerbound=*/zero, /*upperbound=*/upperbound,
/*extent=*/extent, /*stride=*/stride, /*strideInBytes=*/false,
/*startIdx=*/lowerbound);
accBounds.push_back(accBound);
}
}
}
if (!accBounds.empty())
return accBounds;
}
assert(false && "array with unknown dimension expected to have descriptor");
return {};
}

View File

@@ -2,6 +2,7 @@
// RUN: fir-opt %s -pass-pipeline='builtin.module(test-fir-openacc-interfaces)' -split-input-file --mlir-disable-threading 2>&1 | FileCheck %s
module attributes {dlti.dl_spec = #dlti.dl_spec<f16 = dense<16> : vector<2xi64>, f128 = dense<128> : vector<2xi64>, !llvm.ptr<270> = dense<32> : vector<4xi64>, f64 = dense<64> : vector<2xi64>, !llvm.ptr<271> = dense<32> : vector<4xi64>, !llvm.ptr<272> = dense<64> : vector<4xi64>, i64 = dense<64> : vector<2xi64>, i128 = dense<128> : vector<2xi64>, f80 = dense<128> : vector<2xi64>, !llvm.ptr = dense<64> : vector<4xi64>, i1 = dense<8> : vector<2xi64>, i8 = dense<8> : vector<2xi64>, i16 = dense<16> : vector<2xi64>, i32 = dense<32> : vector<2xi64>, "dlti.endianness" = "little", "dlti.stack_alignment" = 128 : i64>, fir.defaultkind = "a1c4d8i4l4r4", fir.kindmap = "", llvm.data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128"} {
// This test exercises explicit-shape local array of form "arr(2:10)"
func.func @_QPsub() {
%c2 = arith.constant 2 : index
%c10 = arith.constant 10 : index
@@ -15,13 +16,66 @@ module attributes {dlti.dl_spec = #dlti.dl_spec<f16 = dense<16> : vector<2xi64>,
acc.enter_data dataOperands(%5, %6 : !fir.box<!fir.array<10xf32>>, !fir.ref<!fir.array<10xf32>>)
return
}
}
// CHECK: Visiting: %{{.*}} = acc.copyin var(%{{.*}} : !fir.box<!fir.array<10xf32>>) -> !fir.box<!fir.array<10xf32>> {name = "arr", structured = false}
// CHECK: Mappable: !fir.box<!fir.array<10xf32>>
// CHECK: Type category: array
// CHECK: Size: 40
// CHECK: Visiting: %{{.*}} = acc.copyin varPtr(%{{.*}} : !fir.ref<!fir.array<10xf32>>) -> !fir.ref<!fir.array<10xf32>> {name = "arr", structured = false}
// CHECK: Mappable: !fir.array<10xf32>
// CHECK: Type category: array
// CHECK: Size: 40
// CHECK: Visiting: %{{.*}} = acc.copyin var(%{{.*}} : !fir.box<!fir.array<10xf32>>) -> !fir.box<!fir.array<10xf32>> {name = "arr", structured = false}
// CHECK: Mappable: !fir.box<!fir.array<10xf32>>
// CHECK: Type category: array
// CHECK: Size: 40
// CHECK: Visiting: %{{.*}} = acc.copyin varPtr(%{{.*}} : !fir.ref<!fir.array<10xf32>>) -> !fir.ref<!fir.array<10xf32>> {name = "arr", structured = false}
// CHECK: Mappable: !fir.array<10xf32>
// CHECK: Type category: array
// CHECK: Size: 40
// This second test exercises argument of explicit-shape arrays in following forms:
// `real :: arr1(nn), arr2(2:nn), arr3(10)`
// It uses the reference instead of the box in the clauses to test that bounds
// can be generated from the shape operations.
func.func @_QPacc_explicit_shape(%arg0: !fir.ref<!fir.array<?xf32>> {fir.bindc_name = "arr1"}, %arg1: !fir.ref<!fir.array<?xf32>> {fir.bindc_name = "arr2"}, %arg2: !fir.ref<i32> {fir.bindc_name = "nn"}) {
%c-1 = arith.constant -1 : index
%c2 = arith.constant 2 : index
%c0 = arith.constant 0 : index
%c10 = arith.constant 10 : index
%0 = fir.dummy_scope : !fir.dscope
%1:2 = hlfir.declare %arg2 dummy_scope %0 {uniq_name = "_QFacc_explicit_shapeEnn"} : (!fir.ref<i32>, !fir.dscope) -> (!fir.ref<i32>, !fir.ref<i32>)
%2 = fir.alloca !fir.array<10xf32> {bindc_name = "arr3", uniq_name = "_QFacc_explicit_shapeEarr3"}
%3 = fir.shape %c10 : (index) -> !fir.shape<1>
%4:2 = hlfir.declare %2(%3) {uniq_name = "_QFacc_explicit_shapeEarr3"} : (!fir.ref<!fir.array<10xf32>>, !fir.shape<1>) -> (!fir.ref<!fir.array<10xf32>>, !fir.ref<!fir.array<10xf32>>)
%5 = fir.load %1#0 : !fir.ref<i32>
%6 = fir.convert %5 : (i32) -> index
%7 = arith.cmpi sgt, %6, %c0 : index
%8 = arith.select %7, %6, %c0 : index
%9 = fir.shape %8 : (index) -> !fir.shape<1>
%10:2 = hlfir.declare %arg0(%9) dummy_scope %0 {uniq_name = "_QFacc_explicit_shapeEarr1"} : (!fir.ref<!fir.array<?xf32>>, !fir.shape<1>, !fir.dscope) -> (!fir.box<!fir.array<?xf32>>, !fir.ref<!fir.array<?xf32>>)
%11 = arith.addi %6, %c-1 : index
%12 = arith.cmpi sgt, %11, %c0 : index
%13 = arith.select %12, %11, %c0 : index
%14 = fir.shape_shift %c2, %13 : (index, index) -> !fir.shapeshift<1>
%15:2 = hlfir.declare %arg1(%14) dummy_scope %0 {uniq_name = "_QFacc_explicit_shapeEarr2"} : (!fir.ref<!fir.array<?xf32>>, !fir.shapeshift<1>, !fir.dscope) -> (!fir.box<!fir.array<?xf32>>, !fir.ref<!fir.array<?xf32>>)
%16 = acc.copyin var(%10#1 : !fir.ref<!fir.array<?xf32>>) -> !fir.ref<!fir.array<?xf32>> {name = "arr1", structured = false}
%17 = acc.copyin var(%15#1 : !fir.ref<!fir.array<?xf32>>) -> !fir.ref<!fir.array<?xf32>> {name = "arr2", structured = false}
%18 = acc.copyin varPtr(%4#0 : !fir.ref<!fir.array<10xf32>>) -> !fir.ref<!fir.array<10xf32>> {name = "arr3", structured = false}
acc.enter_data dataOperands(%16, %17, %18 : !fir.ref<!fir.array<?xf32>>, !fir.ref<!fir.array<?xf32>>, !fir.ref<!fir.array<10xf32>>)
return
}
// CHECK: Visiting: %{{.*}} = acc.copyin varPtr(%{{.*}} : !fir.ref<!fir.array<?xf32>>) -> !fir.ref<!fir.array<?xf32>> {name = "arr1", structured = false}
// CHECK: Pointer-like: !fir.ref<!fir.array<?xf32>>
// CHECK: Mappable: !fir.array<?xf32>
// CHECK: Type category: array
// CHECK: Bound[0]: %{{.*}} = acc.bounds lowerbound(%c0{{.*}} : index) upperbound(%{{.*}} : index) extent(%{{.*}} : index) stride(%c1{{.*}} : index) startIdx(%c1{{.*}} : index)
// CHECK: Visiting: %{{.*}} = acc.copyin varPtr(%{{.*}} : !fir.ref<!fir.array<?xf32>>) -> !fir.ref<!fir.array<?xf32>> {name = "arr2", structured = false}
// CHECK: Pointer-like: !fir.ref<!fir.array<?xf32>>
// CHECK: Mappable: !fir.array<?xf32>
// CHECK: Type category: array
// CHECK: Bound[0]: %{{.*}} = acc.bounds lowerbound(%c0{{.*}} : index) upperbound(%{{.*}} : index) extent(%{{.*}} : index) stride(%c1{{.*}} : index) startIdx(%c2{{.*}} : index)
// CHECK: Visiting: %{{.*}} = acc.copyin varPtr(%{{.*}} : !fir.ref<!fir.array<10xf32>>) -> !fir.ref<!fir.array<10xf32>> {name = "arr3", structured = false}
// CHECK: Pointer-like: !fir.ref<!fir.array<10xf32>>
// CHECK: Mappable: !fir.array<10xf32>
// CHECK: Type category: array
// CHECK: Size: 40
// CHECK: Offset: 0
// CHECK: Bound[0]: %{{.*}} = acc.bounds lowerbound(%c0{{.*}} : index) upperbound(%{{.*}} : index) extent(%c10{{.*}} : index) stride(%c1{{.*}} : index) startIdx(%c1{{.*}} : index)
}