[mlir][llvm] Fix bug in constant import from LLVM IR.

The revision addresses a bug during constant expression traversal
when importing LLVM IR. A constant expression may have cyclic
dependencies, for example, when a constant is initialized with its
address. This revision extends the constant expression traversal
to detect cyclic dependencies and adds a test to verify this
case is handled properly.

Reviewed By: Dinistro

Differential Revision: https://reviews.llvm.org/D143152
This commit is contained in:
Tobias Gysi
2023-02-06 10:01:27 +01:00
parent 6ca034644d
commit b6a2e33500
5 changed files with 156 additions and 125 deletions

View File

@@ -859,37 +859,57 @@ ModuleImport::convertGlobalCtorsAndDtors(llvm::GlobalVariable *globalVar) {
SetVector<llvm::Constant *>
ModuleImport::getConstantsToConvert(llvm::Constant *constant) {
// Traverse the constant dependencies in post order.
SmallVector<llvm::Constant *> workList;
SmallVector<llvm::Constant *> orderedList;
workList.push_back(constant);
// Return the empty set if the constant has been translated before.
if (valueMapping.count(constant))
return {};
// Traverse the constants in post-order and stop the traversal if a constant
// already has a `valueMapping` from an earlier constant translation or if the
// constant is traversed a second time.
SetVector<llvm::Constant *> orderedSet;
SetVector<llvm::Constant *> workList;
DenseMap<llvm::Constant *, SmallVector<llvm::Constant *>> adjacencyLists;
workList.insert(constant);
while (!workList.empty()) {
llvm::Constant *current = workList.pop_back_val();
// Skip constants that have been converted before and store all other ones.
if (valueMapping.count(current))
continue;
orderedList.push_back(current);
// Add the current constant's dependencies to the work list. Only add
// constant dependencies and skip any other values such as basic block
// addresses.
for (llvm::Value *operand : current->operands())
if (auto *constDependency = dyn_cast<llvm::Constant>(operand))
workList.push_back(constDependency);
// Use the `getElementValue` method to add the dependencies of zero
// initialized aggregate constants since they do not take any operands.
if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(current)) {
unsigned numElements = constAgg->getElementCount().getFixedValue();
for (unsigned i = 0, e = numElements; i != e; ++i)
workList.push_back(constAgg->getElementValue(i));
llvm::Constant *current = workList.back();
// Collect all dependencies of the current constant and add them to the
// adjacency list if none has been computed before.
auto adjacencyIt = adjacencyLists.find(current);
if (adjacencyIt == adjacencyLists.end()) {
adjacencyIt = adjacencyLists.try_emplace(current).first;
// Add all constant operands to the adjacency list and skip any other
// values such as basic block addresses.
for (llvm::Value *operand : current->operands())
if (auto *constDependency = dyn_cast<llvm::Constant>(operand))
adjacencyIt->getSecond().push_back(constDependency);
// Use the getElementValue method to add the dependencies of zero
// initialized aggregate constants since they do not take any operands.
if (auto *constAgg = dyn_cast<llvm::ConstantAggregateZero>(current)) {
unsigned numElements = constAgg->getElementCount().getFixedValue();
for (unsigned i = 0, e = numElements; i != e; ++i)
adjacencyIt->getSecond().push_back(constAgg->getElementValue(i));
}
}
// Add the current constant to the `orderedSet` of the traversed nodes if
// all its dependencies have been traversed before. Additionally, remove the
// constant from the `workList` and continue the traversal.
if (adjacencyIt->getSecond().empty()) {
orderedSet.insert(current);
workList.pop_back();
continue;
}
// Add the next dependency from the adjacency list to the `workList` and
// continue the traversal. Remove the dependency from the adjacency list to
// mark that it has been processed. Only enqueue the dependency if it has no
// `valueMapping` from an earlier translation and if it has not been
// enqueued before.
llvm::Constant *dependency = adjacencyIt->getSecond().pop_back_val();
if (valueMapping.count(dependency) || workList.count(dependency) ||
orderedSet.count(dependency))
continue;
workList.insert(dependency);
}
// Add the constants in reverse post order to the result set to ensure all
// dependencies are satisfied. Avoid storing duplicates since LLVM constants
// are uniqued and only one `valueMapping` entry per constant is possible.
SetVector<llvm::Constant *> orderedSet;
for (llvm::Constant *orderedConst : llvm::reverse(orderedList))
orderedSet.insert(orderedConst);
return orderedSet;
}

View File

@@ -60,10 +60,10 @@ define ptr @null_constant() {
; CHECK-LABEL: @gep_const_expr
define ptr @gep_const_expr() {
; CHECK: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK: %[[IDX:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
; CHECK: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK: llvm.return %[[GEP]] : !llvm.ptr
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: llvm.return %[[GEP]] : !llvm.ptr
ret ptr getelementptr (i32, ptr @global, i32 2)
}
@@ -73,14 +73,14 @@ define ptr @gep_const_expr() {
; CHECK-LABEL: @const_expr_with_duplicate
define i64 @const_expr_with_duplicate() {
; CHECK: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK: %[[IDX:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK: %[[DUP:[0-9]+]] = llvm.ptrtoint %[[GEP]] : !llvm.ptr to i64
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[DUP:[0-9]+]] = llvm.ptrtoint %[[GEP]] : !llvm.ptr to i64
; Verify the duplicate sub expression is converted only once.
; CHECK: %[[SUM:[0-9]+]] = llvm.add %[[DUP]], %[[DUP]] : i64
; CHECK: llvm.return %[[SUM]] : i64
; CHECK-DAG: %[[SUM:[0-9]+]] = llvm.add %[[DUP]], %[[DUP]] : i64
; CHECK-DAG: llvm.return %[[SUM]] : i64
ret i64 add (i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64),
i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64))
}
@@ -92,27 +92,27 @@ define i64 @const_expr_with_duplicate() {
; CHECK-LABEL: @const_expr_with_aggregate()
define i64 @const_expr_with_aggregate() {
; Compute the vector elements.
; CHECK: %[[VAL1:[0-9]+]] = llvm.mlir.constant(33 : i64) : i64
; CHECK: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK: %[[IDX1:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK: %[[GEP1:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX1]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK: %[[VAL2:[0-9]+]] = llvm.ptrtoint %[[GEP1]] : !llvm.ptr to i64
; CHECK-DAG: %[[VAL1:[0-9]+]] = llvm.mlir.constant(33 : i64) : i64
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr
; CHECK-DAG: %[[IDX1:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[GEP1:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX1]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[VAL2:[0-9]+]] = llvm.ptrtoint %[[GEP1]] : !llvm.ptr to i64
; Fill the vector.
; CHECK: %[[VEC1:[0-9]+]] = llvm.mlir.undef : vector<2xi64>
; CHECK: %[[IDX2:[0-9]+]] = llvm.mlir.constant(0 : i32) : i32
; CHECK: %[[VEC2:[0-9]+]] = llvm.insertelement %[[VAL1]], %[[VEC1]][%[[IDX2]] : i32] : vector<2xi64>
; CHECK: %[[IDX3:[0-9]+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK: %[[VEC3:[0-9]+]] = llvm.insertelement %[[VAL2]], %[[VEC2]][%[[IDX3]] : i32] : vector<2xi64>
; CHECK: %[[IDX4:[0-9]+]] = llvm.mlir.constant(42 : i32) : i32
; CHECK-DAG: %[[VEC1:[0-9]+]] = llvm.mlir.undef : vector<2xi64>
; CHECK-DAG: %[[IDX2:[0-9]+]] = llvm.mlir.constant(0 : i32) : i32
; CHECK-DAG: %[[VEC2:[0-9]+]] = llvm.insertelement %[[VAL1]], %[[VEC1]][%[[IDX2]] : i32] : vector<2xi64>
; CHECK-DAG: %[[IDX3:[0-9]+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[VEC3:[0-9]+]] = llvm.insertelement %[[VAL2]], %[[VEC2]][%[[IDX3]] : i32] : vector<2xi64>
; CHECK-DAG: %[[IDX4:[0-9]+]] = llvm.mlir.constant(42 : i32) : i32
; Compute the extract index.
; CHECK: %[[GEP2:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX4]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK: %[[IDX5:[0-9]+]] = llvm.ptrtoint %[[GEP2]] : !llvm.ptr to i64
; CHECK-DAG: %[[GEP2:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX4]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG: %[[IDX5:[0-9]+]] = llvm.ptrtoint %[[GEP2]] : !llvm.ptr to i64
; Extract the vector element.
; CHECK: %[[ELEM:[0-9]+]] = llvm.extractelement %[[VEC3]][%[[IDX5]] : i64] : vector<2xi64>
; CHECK: llvm.return %[[ELEM]] : i64
; CHECK-DAG: %[[ELEM:[0-9]+]] = llvm.extractelement %[[VEC3]][%[[IDX5]] : i64] : vector<2xi64>
; CHECK-DAG: llvm.return %[[ELEM]] : i64
ret i64 extractelement (
<2 x i64> <i64 33, i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64)>,
i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64))
@@ -158,43 +158,43 @@ define i32 @function_address_after_def() {
; Verify the aggregate constant import.
; CHECK: %[[C0:.+]] = llvm.mlir.constant(9 : i32) : i32
; CHECK: %[[C1:.+]] = llvm.mlir.constant(4 : i8) : i8
; CHECK: %[[C2:.+]] = llvm.mlir.constant(8 : i16) : i16
; CHECK: %[[C3:.+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
; CHECK: %[[CHAIN0:.+]] = llvm.insertvalue %[[C0]], %[[ROOT]][0]
; CHECK: %[[CHAIN1:.+]] = llvm.insertvalue %[[C1]], %[[CHAIN0]][1]
; CHECK: %[[CHAIN2:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN1]][2]
; CHECK: %[[CHAIN3:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN2]][3]
; CHECK: llvm.return %[[CHAIN3]]
; CHECK-DAG: %[[C0:.+]] = llvm.mlir.constant(9 : i32) : i32
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(4 : i8) : i8
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(8 : i16) : i16
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C0]], %[[ROOT]][0]
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C1]], %[[CHAIN0]][1]
; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN1]][2]
; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN2]][3]
; CHECK-DAG: llvm.return %[[CHAIN3]]
%simple_agg_type = type {i32, i8, i16, i32}
@simple_agg = global %simple_agg_type {i32 9, i8 4, i16 8, i32 7}
; CHECK: %[[C1:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK: %[[C2:.+]] = llvm.mlir.constant(2 : i8) : i8
; CHECK: %[[C3:.+]] = llvm.mlir.constant(3 : i16) : i16
; CHECK: %[[C4:.+]] = llvm.mlir.constant(4 : i32) : i32
; CHECK: %[[NESTED:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
; CHECK: %[[CHAIN0:.+]] = llvm.insertvalue %[[C1]], %[[NESTED]][0]
; CHECK: %[[CHAIN1:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN0]][1]
; CHECK: %[[CHAIN2:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN1]][2]
; CHECK: %[[CHAIN3:.+]] = llvm.insertvalue %[[C4]], %[[CHAIN2]][3]
; CHECK: %[[NULL:.+]] = llvm.mlir.null : !llvm.ptr
; CHECK: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"nested_agg_type", (struct<"simple_agg_type", (i32, i8, i16, i32)>, ptr)>
; CHECK: %[[CHAIN4:.+]] = llvm.insertvalue %[[CHAIN3]], %[[ROOT]][0]
; CHECK: %[[CHAIN5:.+]] = llvm.insertvalue %[[NULL]], %[[CHAIN4]][1]
; CHECK: llvm.return %[[CHAIN5]]
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(2 : i8) : i8
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(3 : i16) : i16
; CHECK-DAG: %[[C4:.+]] = llvm.mlir.constant(4 : i32) : i32
; CHECK-DAG: %[[NESTED:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)>
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C1]], %[[NESTED]][0]
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN0]][1]
; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN1]][2]
; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C4]], %[[CHAIN2]][3]
; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.null : !llvm.ptr
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"nested_agg_type", (struct<"simple_agg_type", (i32, i8, i16, i32)>, ptr)>
; CHECK-DAG: %[[CHAIN4:.+]] = llvm.insertvalue %[[CHAIN3]], %[[ROOT]][0]
; CHECK-DAG: %[[CHAIN5:.+]] = llvm.insertvalue %[[NULL]], %[[CHAIN4]][1]
; CHECK-DAG: llvm.return %[[CHAIN5]]
%nested_agg_type = type {%simple_agg_type, ptr}
@nested_agg = global %nested_agg_type { %simple_agg_type{i32 1, i8 2, i16 3, i32 4}, ptr null }
; CHECK: %[[NULL:.+]] = llvm.mlir.null : !llvm.ptr
; CHECK: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.vec<2 x ptr>
; CHECK: %[[P0:.+]] = llvm.mlir.constant(0 : i32) : i32
; CHECK: %[[CHAIN0:.+]] = llvm.insertelement %[[NULL]], %[[ROOT]][%[[P0]] : i32] : !llvm.vec<2 x ptr>
; CHECK: %[[P1:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK: %[[CHAIN1:.+]] = llvm.insertelement %[[NULL]], %[[CHAIN0]][%[[P1]] : i32] : !llvm.vec<2 x ptr>
; CHECK: llvm.return %[[CHAIN1]] : !llvm.vec<2 x ptr>
; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.null : !llvm.ptr
; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.vec<2 x ptr>
; CHECK-DAG: %[[P0:.+]] = llvm.mlir.constant(0 : i32) : i32
; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertelement %[[NULL]], %[[ROOT]][%[[P0]] : i32] : !llvm.vec<2 x ptr>
; CHECK-DAG: %[[P1:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertelement %[[NULL]], %[[CHAIN0]][%[[P1]] : i32] : !llvm.vec<2 x ptr>
; CHECK-DAG: llvm.return %[[CHAIN1]] : !llvm.vec<2 x ptr>
@vector_agg = global <2 x ptr> <ptr null, ptr null>
; // -----
@@ -214,3 +214,15 @@ define i64 @const_exprs_with_duplicate() {
%2 = add i64 %1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64)
ret i64 %2
}
; // -----
; Verify the import of constant expressions with cyclic dependencies.
@cyclic = internal constant i64 mul (i64 ptrtoint (ptr @cyclic to i64), i64 ptrtoint (ptr @cyclic to i64))
; CHECK-LABEL: @cyclic
; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @cyclic
; CHECK: %[[VAL0:.+]] = llvm.ptrtoint %[[ADDR]]
; CHECK: %[[VAL1:.+]] = llvm.mul %[[VAL0]], %[[VAL0]]
; CHECK: llvm.return %[[VAL1]]

View File

@@ -33,11 +33,10 @@
; CHECK: llvm.mlir.global internal constant @global_gep_const_expr
; CHECK-SAME: {addr_space = 0 : i32, dso_local} : !llvm.ptr {
; CHECK: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global_int : !llvm.ptr
; CHECK: %[[IDX:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
; CHECK: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK: llvm.return %[[GEP]] : !llvm.ptr
; CHECK: }
; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global_int : !llvm.ptr
; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr
; CHECK-DAG llvm.return %[[GEP]] : !llvm.ptr
@global_gep_const_expr = internal constant ptr getelementptr (i32, ptr @global_int, i32 2)
; // -----

View File

@@ -8,23 +8,23 @@
; only wrote minimum level of checks.
%my_struct = type {i32, ptr}
; CHECK: llvm.mlir.constant(8 : i32) : i32
; CHECK: llvm.mlir.addressof @str0 : !llvm.ptr
; CHECK: llvm.mlir.constant(0 : i32) : i32
; CHECK: llvm.getelementptr
; CHECK: llvm.mlir.undef : !llvm.struct<"my_struct", (i32, ptr)>
; CHECK: llvm.insertvalue
; CHECK: llvm.insertvalue
; CHECK: llvm.mlir.constant(7 : i32) : i32
; CHECK: llvm.mlir.addressof @str1 : !llvm.ptr
; CHECK: llvm.getelementptr
; CHECK: llvm.mlir.undef : !llvm.struct<"my_struct", (i32, ptr)>
; CHECK: llvm.insertvalue
; CHECK: llvm.insertvalue
; CHECK: llvm.mlir.undef : !llvm.array<2 x struct<"my_struct", (i32, ptr)>>
; CHECK: llvm.insertvalue
; CHECK: llvm.insertvalue
; CHECK: llvm.return
; CHECK-DAG: llvm.mlir.constant(8 : i32) : i32
; CHECK-DAG: llvm.mlir.addressof @str0 : !llvm.ptr
; CHECK-DAG: llvm.mlir.constant(0 : i32) : i32
; CHECK-DAG: llvm.getelementptr
; CHECK-DAG: llvm.mlir.undef : !llvm.struct<"my_struct", (i32, ptr)>
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: llvm.mlir.addressof @str1 : !llvm.ptr
; CHECK-DAG: llvm.getelementptr
; CHECK-DAG: llvm.mlir.undef : !llvm.struct<"my_struct", (i32, ptr)>
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.mlir.undef : !llvm.array<2 x struct<"my_struct", (i32, ptr)>>
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.return
@str0 = private unnamed_addr constant [5 x i8] c"aaaa\00"
@str1 = private unnamed_addr constant [5 x i8] c"bbbb\00"
@g = global [2 x %my_struct] [%my_struct {i32 8, ptr getelementptr ([5 x i8], ptr @str0, i32 0, i32 1)}, %my_struct {i32 7, ptr getelementptr ([5 x i8], ptr @str1, i32 0, i32 1)}]

View File

@@ -5,26 +5,26 @@
; Thus, we only wrote minimum level of checks.
%my_struct = type {i32, ptr}
; CHECK: llvm.mlir.constant(8 : i32) : i32
; CHECK: llvm.mlir.addressof @str0 : !llvm.ptr
; CHECK: llvm.mlir.constant(0 : i32) : i32
; CHECK: llvm.mlir.constant(1 : i32) : i32
; CHECK: llvm.getelementptr
; CHECK: llvm.mlir.undef : !llvm.struct<"my_struct", (i32, ptr)>
; CHECK: llvm.insertvalue
; CHECK: llvm.insertvalue
; CHECK: llvm.mlir.constant(7 : i32) : i32
; CHECK: llvm.mlir.addressof @str1 : !llvm.ptr
; CHECK: llvm.mlir.constant(2 : i32) : i32
; CHECK: llvm.mlir.constant(3 : i32) : i32
; CHECK: llvm.getelementptr
; CHECK: llvm.mlir.undef : !llvm.struct<"my_struct", (i32, ptr)>
; CHECK: llvm.insertvalue
; CHECK: llvm.insertvalue
; CHECK: llvm.mlir.undef : !llvm.array<2 x struct<"my_struct", (i32, ptr)>>
; CHECK: llvm.insertvalue
; CHECK: llvm.insertvalue
; CHECK: llvm.return
; CHECK-DAG: llvm.mlir.constant(8 : i32) : i32
; CHECK-DAG: llvm.mlir.addressof @str0 : !llvm.ptr
; CHECK-DAG: llvm.mlir.constant(0 : i32) : i32
; CHECK-DAG: llvm.mlir.constant(1 : i32) : i32
; CHECK-DAG: llvm.getelementptr
; CHECK-DAG: llvm.mlir.undef : !llvm.struct<"my_struct", (i32, ptr)>
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.mlir.constant(7 : i32) : i32
; CHECK-DAG: llvm.mlir.addressof @str1 : !llvm.ptr
; CHECK-DAG: llvm.mlir.constant(2 : i32) : i32
; CHECK-DAG: llvm.mlir.constant(3 : i32) : i32
; CHECK-DAG: llvm.getelementptr
; CHECK-DAG: llvm.mlir.undef : !llvm.struct<"my_struct", (i32, ptr)>
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.mlir.undef : !llvm.array<2 x struct<"my_struct", (i32, ptr)>>
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.insertvalue
; CHECK-DAG: llvm.return
@str0 = private unnamed_addr constant [5 x i8] c"aaaa\00"
@str1 = private unnamed_addr constant [5 x i8] c"bbbb\00"
@g = global [2 x %my_struct] [%my_struct {i32 8, ptr getelementptr ([5 x i8], ptr @str0, i32 0, i32 1)}, %my_struct {i32 7, ptr getelementptr ([5 x i8], ptr @str1, i32 2, i32 3)}]