[SVE] Add support for scalable vectorization of loops with int/fast FP reductions

This patch enables scalable vectorization of loops with integer/fast reductions, e.g:

```
unsigned sum = 0;
for (int i = 0; i < n; ++i) {
  sum += a[i];
}
```

A new TTI interface, isLegalToVectorizeReduction, has been added to prevent
reductions which are not supported for scalable types from vectorizing.
If the reduction is not supported for a given scalable VF,
computeFeasibleMaxVF will fall back to using fixed-width vectorization.

Reviewed By: david-arm, fhahn, dmgreen

Differential Revision: https://reviews.llvm.org/D95245
This commit is contained in:
Kerry McLaughlin
2021-02-16 10:43:42 +00:00
parent 32389346ed
commit ba1e150d03
7 changed files with 483 additions and 9 deletions

View File

@@ -21,6 +21,7 @@
#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
@@ -1308,6 +1309,10 @@ public:
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment,
unsigned AddrSpace) const;
/// \returns True if it is legal to vectorize the given reduction kind.
bool isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc,
ElementCount VF) const;
/// \returns The new vector factor value if the target doesn't support \p
/// SizeInBytes loads or has a better vector factor.
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
@@ -1643,6 +1648,8 @@ public:
virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
Align Alignment,
unsigned AddrSpace) const = 0;
virtual bool isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc,
ElementCount VF) const = 0;
virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const = 0;
@@ -2169,6 +2176,10 @@ public:
return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
AddrSpace);
}
bool isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc,
ElementCount VF) const override {
return Impl.isLegalToVectorizeReduction(RdxDesc, VF);
}
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const override {

View File

@@ -689,6 +689,11 @@ public:
return true;
}
bool isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc,
ElementCount VF) const {
return true;
}
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {

View File

@@ -1033,6 +1033,11 @@ bool TargetTransformInfo::isLegalToVectorizeStoreChain(
AddrSpace);
}
bool TargetTransformInfo::isLegalToVectorizeReduction(
RecurrenceDescriptor RdxDesc, ElementCount VF) const {
return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
}
unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
unsigned LoadSize,
unsigned ChainSizeInBytes,

View File

@@ -1089,6 +1089,33 @@ bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
return Considerable;
}
bool AArch64TTIImpl::isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc,
ElementCount VF) const {
if (!VF.isScalable())
return true;
Type *Ty = RdxDesc.getRecurrenceType();
if (Ty->isBFloatTy() || !isLegalElementTypeForSVE(Ty))
return false;
switch (RdxDesc.getRecurrenceKind()) {
case RecurKind::Add:
case RecurKind::FAdd:
case RecurKind::And:
case RecurKind::Or:
case RecurKind::Xor:
case RecurKind::SMin:
case RecurKind::SMax:
case RecurKind::UMin:
case RecurKind::UMax:
case RecurKind::FMin:
case RecurKind::FMax:
return true;
default:
return false;
}
}
int AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
bool IsPairwise, bool IsUnsigned,
TTI::TargetCostKind CostKind) {

View File

@@ -186,12 +186,14 @@ public:
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info);
bool isLegalScalarTypeForSVEMaskedMemOp(Type *Ty) const {
bool isLegalElementTypeForSVE(Type *Ty) const {
if (Ty->isPointerTy())
return true;
if (Ty->isBFloatTy() || Ty->isHalfTy() ||
Ty->isFloatTy() || Ty->isDoubleTy())
if (Ty->isBFloatTy() && ST->hasBF16())
return true;
if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
return true;
if (Ty->isIntegerTy(8) || Ty->isIntegerTy(16) ||
@@ -205,7 +207,7 @@ public:
if (isa<FixedVectorType>(DataType) || !ST->hasSVE())
return false;
return isLegalScalarTypeForSVEMaskedMemOp(DataType->getScalarType());
return isLegalElementTypeForSVE(DataType->getScalarType());
}
bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
@@ -220,7 +222,7 @@ public:
if (isa<FixedVectorType>(DataType) || !ST->hasSVE())
return false;
return isLegalScalarTypeForSVEMaskedMemOp(DataType->getScalarType());
return isLegalElementTypeForSVE(DataType->getScalarType());
}
bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
@@ -266,6 +268,9 @@ public:
bool supportsScalableVectors() const { return ST->hasSVE(); }
bool isLegalToVectorizeReduction(RecurrenceDescriptor RdxDesc,
ElementCount VF) const;
int getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
bool IsPairwiseForm,
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput);

View File

@@ -1525,6 +1525,15 @@ public:
(SI && isLegalMaskedScatter(Ty, Align));
}
/// Returns true if the target machine supports all of the reduction
/// variables found for the given VF.
bool canVectorizeReductions(ElementCount VF) {
return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
RecurrenceDescriptor RdxDesc = Reduction.second;
return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
}));
}
/// Returns true if \p I is an instruction that will be scalarized with
/// predication. Such instructions include conditional stores and
/// instructions that may divide by zero.
@@ -4626,7 +4635,6 @@ void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
RecurrenceDescriptor *RdxDesc,
Value *StartV, VPValue *Def,
VPTransformState &State) {
assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
PHINode *P = cast<PHINode>(PN);
if (EnableVPlanNativePath) {
// Currently we enter here in the VPlan-native path for non-induction
@@ -5688,9 +5696,22 @@ LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
// then a suitable VF is chosen. If UserVF is specified and there are
// dependencies, check if it's legal. However, if a UserVF is specified and
// there are no dependencies, then there's nothing to do.
if (UserVF.isNonZero() && !IgnoreScalableUserVF &&
Legal->isSafeForAnyVectorWidth())
return UserVF;
if (UserVF.isNonZero() && !IgnoreScalableUserVF) {
if (!canVectorizeReductions(UserVF)) {
reportVectorizationFailure(
"LV: Scalable vectorization not supported for the reduction "
"operations found in this loop. Using fixed-width "
"vectorization instead.",
"Scalable vectorization not supported for the reduction operations "
"found in this loop. Using fixed-width vectorization instead.",
"ScalableVFUnfeasible", ORE, TheLoop);
return computeFeasibleMaxVF(
ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue()));
}
if (Legal->isSafeForAnyVectorWidth())
return UserVF;
}
MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
unsigned SmallestType, WidestType;

View File

@@ -0,0 +1,400 @@
; RUN: opt < %s -loop-vectorize -pass-remarks=loop-vectorize -pass-remarks-analysis=loop-vectorize -pass-remarks-missed=loop-vectorize -mtriple aarch64-unknown-linux-gnu -mattr=+sve -S 2>%t | FileCheck %s -check-prefix=CHECK
; RUN: cat %t | FileCheck %s -check-prefix=CHECK-REMARK
; Reduction can be vectorized
; ADD
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @add(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @add
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ADD1:.*]] = add <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = add <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ADD:.*]] = add <vscale x 8 x i32> %[[ADD2]], %[[ADD1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.add.nxv8i32(<vscale x 8 x i32> %[[ADD]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %add
}
; OR
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @or(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @or
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[OR1:.*]] = or <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[OR2:.*]] = or <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[OR:.*]] = or <vscale x 8 x i32> %[[OR2]], %[[OR1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.or.nxv8i32(<vscale x 8 x i32> %[[OR]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %or, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%or = or i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %or
}
; AND
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @and(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @and
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[AND1:.*]] = and <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[AND2:.*]] = and <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ABD:.*]] = and <vscale x 8 x i32> %[[ADD2]], %[[AND1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.and.nxv8i32(<vscale x 8 x i32> %[[ADD]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %and, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%and = and i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %and
}
; XOR
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define i32 @xor(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @xor
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[XOR1:.*]] = xor <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[XOR2:.*]] = xor <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[XOR:.*]] = xor <vscale x 8 x i32> %[[XOR2]], %[[XOR1]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.xor.nxv8i32(<vscale x 8 x i32> %[[XOR]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %xor, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%xor = xor i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %xor
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; SMIN
define i32 @smin(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @smin
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ICMP1:.*]] = icmp slt <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ICMP2:.*]] = icmp slt <vscale x 8 x i32> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[ICMP1]], <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[ICMP2]], <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ICMP:.*]] = icmp slt <vscale x 8 x i32> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[ICMP]], <vscale x 8 x i32> %[[SEL1]], <vscale x 8 x i32> %[[SEL2]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.smin.nxv8i32(<vscale x 8 x i32> %[[SEL]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.010 = phi i32 [ 2, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%cmp.i = icmp slt i32 %0, %sum.010
%.sroa.speculated = select i1 %cmp.i, i32 %0, i32 %sum.010
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %.sroa.speculated
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; UMAX
define i32 @umax(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @umax
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x i32>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x i32>
; CHECK: %[[ICMP1:.*]] = icmp ugt <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[ICMP2:.*]] = icmp ugt <vscale x 8 x i32> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[ICMP1]], <vscale x 8 x i32> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[ICMP2]], <vscale x 8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ICMP:.*]] = icmp ugt <vscale x 8 x i32> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[ICMP]], <vscale x 8 x i32> %[[SEL1]], <vscale x 8 x i32> %[[SEL2]]
; CHECK-NEXT: call i32 @llvm.vector.reduce.umax.nxv8i32(<vscale x 8 x i32> %[[SEL]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.010 = phi i32 [ 2, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%cmp.i = icmp ugt i32 %0, %sum.010
%.sroa.speculated = select i1 %cmp.i, i32 %0, i32 %sum.010
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %.sroa.speculated
}
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
; FADD (FAST)
define float @fadd_fast(float* noalias nocapture readonly %a, i64 %n) {
; CHECK-LABEL: @fadd_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[ADD1:.*]] = fadd fast <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = fadd fast <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[ADD:.*]] = fadd fast <vscale x 8 x float> %[[ADD2]], %[[ADD1]]
; CHECK-NEXT: call fast float @llvm.vector.reduce.fadd.nxv8f32(float -0.000000e+00, <vscale x 8 x float> %[[ADD]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds float, float* %a, i64 %iv
%0 = load float, float* %arrayidx, align 4
%add = fadd fast float %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %add
}
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. Using fixed-width vectorization instead.
; CHECK-REMARK: vectorized loop (vectorization width: 8, interleaved count: 2)
define bfloat @fadd_fast_bfloat(bfloat* noalias nocapture readonly %a, i64 %n) {
; CHECK-LABEL: @fadd_fast_bfloat
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <8 x bfloat>
; CHECK: %[[LOAD2:.*]] = load <8 x bfloat>
; CHECK: %[[FADD1:.*]] = fadd fast <8 x bfloat> %[[LOAD1]]
; CHECK: %[[FADD2:.*]] = fadd fast <8 x bfloat> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = fadd fast <8 x bfloat> %[[FADD2]], %[[FADD1]]
; CHECK: call fast bfloat @llvm.vector.reduce.fadd.v8bf16(bfloat 0xR8000, <8 x bfloat> %[[RDX]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi bfloat [ 0.000000e+00, %entry ], [ %add, %for.body ]
%arrayidx = getelementptr inbounds bfloat, bfloat* %a, i64 %iv
%0 = load bfloat, bfloat* %arrayidx, align 4
%add = fadd fast bfloat %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret bfloat %add
}
; FMIN (FAST)
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define float @fmin_fast(float* noalias nocapture readonly %a, i64 %n) #0 {
; CHECK-LABEL: @fmin_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[FCMP1:.*]] = fcmp olt <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[FCMP2:.*]] = fcmp olt <vscale x 8 x float> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[FCMP1]], <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[FCMP2]], <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[FCMP:.*]] = fcmp olt <vscale x 8 x float> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select <vscale x 8 x i1> %[[FCMP]], <vscale x 8 x float> %[[SEL1]], <vscale x 8 x float> %[[SEL2]]
; CHECK-NEXT: call float @llvm.vector.reduce.fmin.nxv8f32(<vscale x 8 x float> %[[SEL]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds float, float* %a, i64 %iv
%0 = load float, float* %arrayidx, align 4
%cmp.i = fcmp olt float %0, %sum.07
%.sroa.speculated = select i1 %cmp.i, float %0, float %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %.sroa.speculated
}
; FMAX (FAST)
; CHECK-REMARK: vectorized loop (vectorization width: vscale x 8, interleaved count: 2)
define float @fmax_fast(float* noalias nocapture readonly %a, i64 %n) #0 {
; CHECK-LABEL: @fmax_fast
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <vscale x 8 x float>
; CHECK: %[[LOAD2:.*]] = load <vscale x 8 x float>
; CHECK: %[[FCMP1:.*]] = fcmp fast ogt <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[FCMP2:.*]] = fcmp fast ogt <vscale x 8 x float> %[[LOAD2]]
; CHECK: %[[SEL1:.*]] = select <vscale x 8 x i1> %[[FCMP1]], <vscale x 8 x float> %[[LOAD1]]
; CHECK: %[[SEL2:.*]] = select <vscale x 8 x i1> %[[FCMP2]], <vscale x 8 x float> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[FCMP:.*]] = fcmp fast ogt <vscale x 8 x float> %[[SEL1]], %[[SEL2]]
; CHECK-NEXT: %[[SEL:.*]] = select fast <vscale x 8 x i1> %[[FCMP]], <vscale x 8 x float> %[[SEL1]], <vscale x 8 x float> %[[SEL2]]
; CHECK-NEXT: call fast float @llvm.vector.reduce.fmax.nxv8f32(<vscale x 8 x float> %[[SEL]])
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi float [ 0.000000e+00, %entry ], [ %.sroa.speculated, %for.body ]
%arrayidx = getelementptr inbounds float, float* %a, i64 %iv
%0 = load float, float* %arrayidx, align 4
%cmp.i = fcmp fast ogt float %0, %sum.07
%.sroa.speculated = select i1 %cmp.i, float %0, float %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret float %.sroa.speculated
}
; Reduction cannot be vectorized
; MUL
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. Using fixed-width vectorization instead.
; CHECK-REMARK: vectorized loop (vectorization width: 8, interleaved count: 2)
define i32 @mul(i32* nocapture %a, i32* nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @mul
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <8 x i32>
; CHECK: %[[LOAD2:.*]] = load <8 x i32>
; CHECK: %[[MUL1:.*]] = mul <8 x i32> %[[LOAD1]]
; CHECK: %[[MUL2:.*]] = mul <8 x i32> %[[LOAD2]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = mul <8 x i32> %[[MUL2]], %[[MUL1]]
; CHECK: call i32 @llvm.vector.reduce.mul.v8i32(<8 x i32> %[[RDX]])
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%sum.07 = phi i32 [ 2, %entry ], [ %mul, %for.body ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %iv
%0 = load i32, i32* %arrayidx, align 4
%mul = mul nsw i32 %0, %sum.07
%iv.next = add nuw nsw i64 %iv, 1
%exitcond.not = icmp eq i64 %iv.next, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body, %entry
ret i32 %mul
}
; Note: This test was added to ensure we always check the legality of reductions (end emit a warning if necessary) before checking for memory dependencies
; CHECK-REMARK: Scalable vectorization not supported for the reduction operations found in this loop. Using fixed-width vectorization instead.
; CHECK-REMARK: vectorized loop (vectorization width: 8, interleaved count: 2)
define i32 @memory_dependence(i32* noalias nocapture %a, i32* noalias nocapture readonly %b, i64 %n) {
; CHECK-LABEL: @memory_dependence
; CHECK: vector.body:
; CHECK: %[[LOAD1:.*]] = load <8 x i32>
; CHECK: %[[LOAD2:.*]] = load <8 x i32>
; CHECK: %[[LOAD3:.*]] = load <8 x i32>
; CHECK: %[[LOAD4:.*]] = load <8 x i32>
; CHECK: %[[ADD1:.*]] = add nsw <8 x i32> %[[LOAD3]], %[[LOAD1]]
; CHECK: %[[ADD2:.*]] = add nsw <8 x i32> %[[LOAD4]], %[[LOAD2]]
; CHECK: %[[MUL1:.*]] = mul <8 x i32> %[[LOAD3]]
; CHECK: %[[MUL2:.*]] = mul <8 x i32> %[[LOAD4]]
; CHECK: middle.block:
; CHECK: %[[RDX:.*]] = mul <8 x i32> %[[MUL2]], %[[MUL1]]
; CHECK: call i32 @llvm.vector.reduce.mul.v8i32(<8 x i32> %[[RDX]])
entry:
br label %for.body
for.body:
%i = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%sum = phi i32 [ %mul, %for.body ], [ 2, %entry ]
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %i
%0 = load i32, i32* %arrayidx, align 4
%arrayidx1 = getelementptr inbounds i32, i32* %b, i64 %i
%1 = load i32, i32* %arrayidx1, align 4
%add = add nsw i32 %1, %0
%add2 = add nuw nsw i64 %i, 32
%arrayidx3 = getelementptr inbounds i32, i32* %a, i64 %add2
store i32 %add, i32* %arrayidx3, align 4
%mul = mul nsw i32 %1, %sum
%inc = add nuw nsw i64 %i, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret i32 %mul
}
attributes #0 = { "no-nans-fp-math"="true" "no-signed-zeros-fp-math"="true" }
!0 = distinct !{!0, !1, !2, !3, !4}
!1 = !{!"llvm.loop.vectorize.width", i32 8}
!2 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
!3 = !{!"llvm.loop.interleave.count", i32 2}
!4 = !{!"llvm.loop.vectorize.enable", i1 true}