Revert "[Clang] Add __builtin_common_reference (#121199)"

This reverts commit 3b9e203364.
Causes not-yet-understood semantic differences, see commits
on #121199.
This commit is contained in:
Nico Weber
2025-12-02 19:19:54 -05:00
parent c5e9289ba5
commit e05fffbbc5
9 changed files with 122 additions and 647 deletions

View File

@@ -1833,23 +1833,6 @@ Builtin type aliases
Clang provides a few builtin aliases to improve the throughput of certain metaprogramming facilities.
__builtin_common_reference
--------------------------
.. code-block:: c++
template <template <class, class, template <class> class, template <class> class> class BasicCommonReferenceT,
template <class... Args> CommonTypeT,
template <class> HasTypeMember,
class HasNoTypeMember,
class... Ts>
using __builtin_common_reference = ...;
This alias is used for implementing ``std::common_reference``. If ``std::common_reference`` should contain a ``type``
member, it is an alias to ``HasTypeMember<TheCommonReference>``. Otherwse it is an alias to ``HasNoTypeMember``. The
``CommonTypeT`` is usually ``std::common_type_t``. ``BasicCommonReferenceT`` is usually an alias template to
``basic_common_reference<T, U, TX, UX>::type``.
__builtin_common_type
---------------------

View File

@@ -10,11 +10,11 @@ class TemplateArg<string name> {
string Name = name;
}
class Template<list<TemplateArg> args, string name = ""> : TemplateArg<name> {
class Template<list<TemplateArg> args, string name> : TemplateArg<name> {
list<TemplateArg> Args = args;
}
class Class<string name = "", bit is_variadic = 0> : TemplateArg<name> {
class Class<string name, bit is_variadic = 0> : TemplateArg<name> {
bit IsVariadic = is_variadic;
}
@@ -56,32 +56,6 @@ def __builtin_common_type : CPlusPlusBuiltinTemplate<
Class<"HasNoTypeMember">,
Class<"Ts", /*is_variadic=*/1>]>;
// template <template <class,"
// class,"
// template <class> class,"
// template <class> class> class BasicCommonReferenceT,"
// template <class... Args> class CommonTypeT,"
// template <class> class HasTypeMember,"
// class HasNoTypeMember,"
// class... Ts>"
def __builtin_common_reference : CPlusPlusBuiltinTemplate<
[Template<[Class<>,
Class<>,
Template<[Class<>]>,
Template<[Class<>]>], "BasicCommonReferenceT">,
Template<[Class<"Args", /*is_variadic=*/1>], "CommonTypeT">,
Template<[Class<>], "HasTypeMember">,
Class<"HasNoTypeMember">,
Class<"Ts", /*is_variadic=*/1>]>;
foreach Ref = ["", "lvalue", "rvalue"] in {
foreach Const = ["", "const"] in {
foreach Volatile = ["", "volatile"] in {
def __clang_internal_xref_#Ref#Const#Volatile : CPlusPlusBuiltinTemplate<[Class<>]>;
}
}
}
// template <uint32_t Opcode,
// uint32_t Size,
// uint32_t Alignment,

View File

@@ -15322,17 +15322,6 @@ public:
QualType BuiltinDecay(QualType BaseType, SourceLocation Loc);
QualType BuiltinAddReference(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinAddRValueReference(QualType BaseType, SourceLocation Loc) {
return BuiltinAddReference(BaseType, UnaryTransformType::AddRvalueReference,
Loc);
}
QualType BuiltinAddLValueReference(QualType BaseType, SourceLocation Loc) {
return BuiltinAddReference(BaseType, UnaryTransformType::AddLvalueReference,
Loc);
}
QualType BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
QualType BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
@@ -15347,9 +15336,6 @@ public:
QualType BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
SourceLocation Loc);
bool BuiltinIsConvertible(QualType From, QualType To, SourceLocation Loc,
bool CheckNothrow = false);
bool BuiltinIsBaseOf(SourceLocation RhsTLoc, QualType LhsT, QualType RhsT);
/// Ensure that the type T is a literal type.

View File

@@ -3212,36 +3212,6 @@ void Sema::NoteAllFoundTemplates(TemplateName Name) {
}
}
static QualType InstantiateTemplate(Sema &S, ElaboratedTypeKeyword Keyword,
TemplateName Template,
ArrayRef<TemplateArgument> Args,
SourceLocation Loc) {
TemplateArgumentListInfo ArgList;
for (auto Arg : Args) {
if (Arg.getKind() == TemplateArgument::Type) {
ArgList.addArgument(TemplateArgumentLoc(
Arg, S.Context.getTrivialTypeSourceInfo(Arg.getAsType())));
} else {
ArgList.addArgument(
S.getTrivialTemplateArgumentLoc(Arg, QualType(), Loc));
}
}
EnterExpressionEvaluationContext UnevaluatedContext(
S, Sema::ExpressionEvaluationContext::Unevaluated);
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
QualType Instantiation =
S.CheckTemplateIdType(Keyword, Template, Loc, ArgList, /*Scope=*/nullptr,
/*ForNestedNameSpecifier=*/false);
if (SFINAE.hasErrorOccurred())
return QualType();
return Instantiation;
}
static QualType builtinCommonTypeImpl(Sema &S, ElaboratedTypeKeyword Keyword,
TemplateName BaseTemplate,
SourceLocation TemplateLoc,
@@ -3254,7 +3224,25 @@ static QualType builtinCommonTypeImpl(Sema &S, ElaboratedTypeKeyword Keyword,
return builtinCommonTypeImpl(S, Keyword, BaseTemplate, TemplateLoc,
{T1, T2});
return InstantiateTemplate(S, Keyword, BaseTemplate, {T1, T2}, TemplateLoc);
TemplateArgumentListInfo Args;
Args.addArgument(TemplateArgumentLoc(
T1, S.Context.getTrivialTypeSourceInfo(T1.getAsType())));
Args.addArgument(TemplateArgumentLoc(
T2, S.Context.getTrivialTypeSourceInfo(T2.getAsType())));
EnterExpressionEvaluationContext UnevaluatedContext(
S, Sema::ExpressionEvaluationContext::Unevaluated);
Sema::SFINAETrap SFINAE(S, /*ForValidityCheck=*/true);
Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
QualType BaseTemplateInst = S.CheckTemplateIdType(
Keyword, BaseTemplate, TemplateLoc, Args,
/*Scope=*/nullptr, /*ForNestedNameSpecifier=*/false);
if (SFINAE.hasErrorOccurred())
return QualType();
return BaseTemplateInst;
};
// Note A: For the common_type trait applied to a template parameter pack T of
@@ -3361,233 +3349,6 @@ static QualType builtinCommonTypeImpl(Sema &S, ElaboratedTypeKeyword Keyword,
}
}
static QualType CopyCV(QualType From, QualType To) {
if (From.isConstQualified())
To.addConst();
if (From.isVolatileQualified())
To.addVolatile();
return To;
}
// Let COND-RES(X, Y) be
// decltype(false ? declval<X(&)()>()() : declval<Y(&)()>()())
static QualType CondRes(Sema &S, QualType X, QualType Y, SourceLocation Loc) {
EnterExpressionEvaluationContext UnevaluatedContext(
S, Sema::ExpressionEvaluationContext::Unevaluated);
Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
// false
OpaqueValueExpr CondExpr(SourceLocation(), S.Context.BoolTy, VK_PRValue);
ExprResult Cond = &CondExpr;
// declval<X(&)()>()()
OpaqueValueExpr LHSExpr(Loc, X.getNonLValueExprType(S.Context),
Expr::getValueKindForType(X));
ExprResult LHS = &LHSExpr;
// declval<Y(&)()>()()
OpaqueValueExpr RHSExpr(Loc, Y.getNonLValueExprType(S.Context),
Expr::getValueKindForType(Y));
ExprResult RHS = &RHSExpr;
ExprValueKind VK = VK_PRValue;
ExprObjectKind OK = OK_Ordinary;
// decltype(false ? declval<X(&)()>()() : declval<Y(&)()>()())
QualType Result = S.CheckConditionalOperands(Cond, LHS, RHS, VK, OK, Loc);
if (SFINAE.hasErrorOccurred())
return QualType();
if (VK == VK_LValue)
return S.BuiltinAddLValueReference(Result, Loc);
if (VK == VK_XValue)
return S.BuiltinAddRValueReference(Result, Loc);
return Result;
}
static QualType CommonRef(Sema &S, QualType A, QualType B, SourceLocation Loc) {
// Given types A and B, let X be remove_reference_t<A>, let Y be
// remove_reference_t<B>, and let COMMON-REF(A, B) be:
assert(A->isReferenceType() && B->isReferenceType() &&
"A and B have to be ref qualified for a COMMON-REF");
auto X = A.getNonReferenceType();
auto Y = B.getNonReferenceType();
// If A and B are both lvalue reference types, COMMON-REF(A, B) is
// COND-RES(COPYCV(X, Y) &, COPYCV(Y, X) &) if that type exists and is a
// reference type.
if (A->isLValueReferenceType() && B->isLValueReferenceType()) {
auto CR = CondRes(S, S.BuiltinAddLValueReference(CopyCV(X, Y), Loc),
S.BuiltinAddLValueReference(CopyCV(Y, X), Loc), Loc);
if (CR.isNull() || !CR->isReferenceType())
return QualType();
return CR;
}
// Otherwise, let C be remove_reference_t<COMMON-REF(X&, Y&)>&&. If A and B
// are both rvalue reference types, C is well-formed, and
// is_convertible_v<A, C> && is_convertible_v<B, C> is true, then
// COMMON-REF(A, B) is C.
if (A->isRValueReferenceType() && B->isRValueReferenceType()) {
auto C = CommonRef(S, S.BuiltinAddLValueReference(X, Loc),
S.BuiltinAddLValueReference(Y, Loc), Loc);
if (C.isNull())
return QualType();
C = C.getNonReferenceType();
if (S.BuiltinIsConvertible(A, C, Loc) && S.BuiltinIsConvertible(B, C, Loc))
return S.BuiltinAddRValueReference(C, Loc);
return QualType();
}
// Otherwise, if A is an lvalue reference and B is an rvalue reference, then
// COMMON-REF(A, B) is COMMON-REF(B, A).
if (A->isLValueReferenceType() && B->isRValueReferenceType())
std::swap(A, B);
// Otherwise, let D be COMMON-REF(const X&, Y&). If A is an rvalue reference
// and B is an lvalue reference and D is well-formed and
// is_convertible_v<A, D> is true, then COMMON-REF(A, B) is D.
if (A->isRValueReferenceType() && B->isLValueReferenceType()) {
auto X2 = X;
X2.addConst();
auto D = CommonRef(S, S.BuiltinAddLValueReference(X2, Loc),
S.BuiltinAddLValueReference(Y, Loc), Loc);
if (!D.isNull() && S.BuiltinIsConvertible(A, D, Loc))
return D;
return QualType();
}
// Otherwise, COMMON-REF(A, B) is ill-formed.
// This is implemented by returning from the individual branches above.
llvm_unreachable("The above cases should be exhaustive");
}
static QualType builtinCommonReferenceImpl(Sema &S,
ElaboratedTypeKeyword Keyword,
TemplateName CommonReference,
TemplateName CommonType,
SourceLocation TemplateLoc,
ArrayRef<TemplateArgument> Ts) {
switch (Ts.size()) {
// If sizeof...(T) is zero, there shall be no member type.
case 0:
return QualType();
// Otherwise, if sizeof...(T) is one, let T0 denote the sole type in the
// pack T. The member typedef type shall denote the same type as T0.
case 1:
return Ts[0].getAsType();
// Otherwise, if sizeof...(T) is two, let T1 and T2 denote the two types in
// the pack T. Then
case 2: {
auto T1 = Ts[0].getAsType();
auto T2 = Ts[1].getAsType();
// Let R be COMMON-REF(T1, T2). If T1 and T2 are reference types, R is
// well-formed, and is_convertible_v<add_pointer_t<T1>, add_pointer_t<R>> &&
// is_convertible_v<add_pointer_t<T2>, add_pointer_t<R>> is true, then the
// member typedef type denotes R.
if (T1->isReferenceType() && T2->isReferenceType()) {
QualType R = CommonRef(S, T1, T2, TemplateLoc);
if (!R.isNull()) {
if (S.BuiltinIsConvertible(S.BuiltinAddPointer(T1, TemplateLoc),
S.BuiltinAddPointer(R, TemplateLoc),
TemplateLoc) &&
S.BuiltinIsConvertible(S.BuiltinAddPointer(T2, TemplateLoc),
S.BuiltinAddPointer(R, TemplateLoc),
TemplateLoc)) {
return R;
}
}
}
// Otherwise, if basic_common_reference<remove_cvref_t<T1>,
// remove_cvref_t<T2>, XREF(T1), XREF(T2)>::type is well-formed,
// then the member typedef type denotes that type.
{
auto getXRef = [&](QualType T) {
BuiltinTemplateDecl *Quals[12] = {
S.Context.get__clang_internal_xref_Decl(),
S.Context.get__clang_internal_xref_constDecl(),
S.Context.get__clang_internal_xref_volatileDecl(),
S.Context.get__clang_internal_xref_constvolatileDecl(),
S.Context.get__clang_internal_xref_lvalueDecl(),
S.Context.get__clang_internal_xref_lvalueconstDecl(),
S.Context.get__clang_internal_xref_lvaluevolatileDecl(),
S.Context.get__clang_internal_xref_lvalueconstvolatileDecl(),
S.Context.get__clang_internal_xref_rvalueDecl(),
S.Context.get__clang_internal_xref_rvalueconstDecl(),
S.Context.get__clang_internal_xref_rvaluevolatileDecl(),
S.Context.get__clang_internal_xref_rvalueconstvolatileDecl(),
};
size_t Index = 0;
if (T->isLValueReferenceType()) {
T = T.getNonReferenceType();
Index += 4;
} else if (T->isRValueReferenceType()) {
T = T.getNonReferenceType();
Index += 8;
}
if (T.isConstQualified())
Index += 1;
if (T.isVolatileQualified())
Index += 2;
return Quals[Index];
};
auto BCR = InstantiateTemplate(S, Keyword, CommonReference,
{S.BuiltinRemoveCVRef(T1, TemplateLoc),
S.BuiltinRemoveCVRef(T2, TemplateLoc),
TemplateName{getXRef(T1)},
TemplateName{getXRef(T2)}},
TemplateLoc);
if (!BCR.isNull())
return BCR;
}
// Otherwise, if COND-RES(T1, T2) is well-formed, then the member typedef
// type denotes that type.
if (auto CR = CondRes(S, T1, T2, TemplateLoc); !CR.isNull())
return CR;
// Otherwise, if common_type_t<T1, T2> is well-formed, then the member
// typedef type denotes that type.
if (auto CT =
InstantiateTemplate(S, Keyword, CommonType, {T1, T2}, TemplateLoc);
!CT.isNull())
return CT;
// Otherwise, there shall be no member type.
return QualType();
}
// Otherwise, if sizeof...(T) is greater than two, let T1, T2, and Rest,
// respectively, denote the first, second, and (pack of) remaining types
// comprising T. Let C be the type common_reference_t<T1, T2>. Then:
default: {
auto T1 = Ts[0];
auto T2 = Ts[1];
auto Rest = Ts.drop_front(2);
auto C = builtinCommonReferenceImpl(S, Keyword, CommonReference, CommonType,
TemplateLoc, {T1, T2});
if (C.isNull())
return QualType();
llvm::SmallVector<TemplateArgument, 4> Args;
Args.emplace_back(C);
Args.append(Rest.begin(), Rest.end());
return builtinCommonReferenceImpl(S, Keyword, CommonReference, CommonType,
TemplateLoc, Args);
}
}
}
static bool isInVkNamespace(const RecordType *RT) {
DeclContext *DC = RT->getDecl()->getDeclContext();
if (!DC)
@@ -3746,89 +3507,6 @@ static QualType checkBuiltinTemplateIdType(
return HasNoTypeMember;
}
case BTK__builtin_common_reference: {
assert(Converted.size() == 5);
if (llvm::any_of(Converted, [](auto &C) { return C.isDependent(); }))
return QualType();
TemplateName BasicCommonReference = Converted[0].getAsTemplate();
TemplateName CommonType = Converted[1].getAsTemplate();
TemplateName HasTypeMember = Converted[2].getAsTemplate();
QualType HasNoTypeMember = Converted[3].getAsType();
ArrayRef<TemplateArgument> Ts = Converted[4].getPackAsArray();
if (auto CR =
builtinCommonReferenceImpl(SemaRef, Keyword, BasicCommonReference,
CommonType, TemplateLoc, Ts);
!CR.isNull()) {
TemplateArgumentListInfo TAs;
TAs.addArgument(TemplateArgumentLoc(
TemplateArgument(CR), SemaRef.Context.getTrivialTypeSourceInfo(
CR, TemplateArgs[1].getLocation())));
return SemaRef.CheckTemplateIdType(Keyword, HasTypeMember, TemplateLoc,
TAs, /*Scope=*/nullptr,
/*ForNestedNameSpecifier=*/false);
}
return HasNoTypeMember;
}
case BTK__clang_internal_xref_:
case BTK__clang_internal_xref_const:
case BTK__clang_internal_xref_volatile:
case BTK__clang_internal_xref_constvolatile:
case BTK__clang_internal_xref_lvalue:
case BTK__clang_internal_xref_lvalueconst:
case BTK__clang_internal_xref_lvaluevolatile:
case BTK__clang_internal_xref_lvalueconstvolatile:
case BTK__clang_internal_xref_rvalue:
case BTK__clang_internal_xref_rvalueconst:
case BTK__clang_internal_xref_rvaluevolatile:
case BTK__clang_internal_xref_rvalueconstvolatile: {
if (llvm::any_of(Converted, [](auto &C) { return C.isDependent(); }))
return QualType();
auto BTK = BTD->getBuiltinTemplateKind();
auto anyOf = [&](auto... Vals) { return ((BTK == Vals) || ...); };
bool AddCV = anyOf(BTK__clang_internal_xref_constvolatile,
BTK__clang_internal_xref_lvalueconstvolatile,
BTK__clang_internal_xref_rvalueconstvolatile);
bool AddConst = AddCV || anyOf(BTK__clang_internal_xref_const,
BTK__clang_internal_xref_lvalueconst,
BTK__clang_internal_xref_rvalueconst);
bool AddVolatile = AddCV || anyOf(BTK__clang_internal_xref_volatile,
BTK__clang_internal_xref_lvaluevolatile,
BTK__clang_internal_xref_rvaluevolatile);
bool AddLValue = anyOf(BTK__clang_internal_xref_lvalue,
BTK__clang_internal_xref_lvalueconst,
BTK__clang_internal_xref_lvaluevolatile,
BTK__clang_internal_xref_lvalueconstvolatile);
bool AddRValue = anyOf(BTK__clang_internal_xref_rvalue,
BTK__clang_internal_xref_rvalueconst,
BTK__clang_internal_xref_rvaluevolatile,
BTK__clang_internal_xref_rvalueconstvolatile);
assert(Converted.size() == 1);
QualType T = Converted[0].getAsType();
if (AddConst)
T.addConst();
if (AddVolatile)
T.addVolatile();
if (AddLValue)
T = SemaRef.BuiltinAddLValueReference(T, TemplateLoc);
else if (AddRValue)
T = SemaRef.BuiltinAddRValueReference(T, TemplateLoc);
return T;
}
case BTK__hlsl_spirv_type: {
assert(Converted.size() == 4);

View File

@@ -32,8 +32,6 @@
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/EnterExpressionEvaluationContext.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/ParsedTemplate.h"
@@ -10074,81 +10072,6 @@ QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
}
bool Sema::BuiltinIsConvertible(QualType From, QualType To, SourceLocation Loc,
bool CheckNothrow) {
if (To->isVoidType())
return From->isVoidType();
// [meta.rel]
// From and To shall be complete types, cv void, or arrays of unknown bound.
if ((!From->isIncompleteArrayType() && !From->isVoidType() &&
RequireCompleteType(
Loc, From, diag::err_incomplete_type_used_in_type_trait_expr)) ||
(!To->isIncompleteArrayType() && !To->isVoidType() &&
RequireCompleteType(Loc, To,
diag::err_incomplete_type_used_in_type_trait_expr)))
return false;
// C++11 [meta.rel]p4:
// Given the following function prototype:
//
// template <class T>
// typename add_rvalue_reference<T>::type create();
//
// the predicate condition for a template specialization
// is_convertible<From, To> shall be satisfied if and only if
// the return expression in the following code would be
// well-formed, including any implicit conversions to the return
// type of the function:
//
// To test() {
// return create<From>();
// }
//
// Access checking is performed as if in a context unrelated to To and
// From. Only the validity of the immediate context of the expression
// of the return-statement (including conversions to the return type)
// is considered.
//
// We model the initialization as a copy-initialization of a temporary
// of the appropriate type, which for this expression is identical to the
// return statement (since NRVO doesn't apply).
// Functions aren't allowed to return function or array types.
if (To->isFunctionType() || To->isArrayType())
return false;
// A function definition requires a non-abstract return type.
if (isAbstractType(Loc, To))
return false;
From = BuiltinAddRValueReference(From, Loc);
// Build a fake source and destination for initialization.
InitializedEntity ToEntity(InitializedEntity::InitializeTemporary(To));
OpaqueValueExpr FromExpr(Loc, From.getNonLValueExprType(Context),
Expr::getValueKindForType(From));
InitializationKind Kind =
InitializationKind::CreateCopy(Loc, SourceLocation());
// Perform the initialization in an unevaluated context within a SFINAE
// trap at translation unit scope.
EnterExpressionEvaluationContext Unevaluated(
*this, Sema::ExpressionEvaluationContext::Unevaluated);
Sema::SFINAETrap SFINAE(*this, /*AccessCheckingSFINAE=*/true);
Sema::ContextRAII TUContext(*this, Context.getTranslationUnitDecl());
Expr *FromExprPtr = &FromExpr;
InitializationSequence Init(*this, ToEntity, Kind, FromExprPtr);
if (Init.Failed())
return false;
ExprResult Result = Init.Perform(*this, ToEntity, Kind, FromExprPtr);
if (Result.isInvalid() || SFINAE.hasErrorOccurred())
return false;
return !CheckNothrow || canThrow(Result.get()) == CT_Cannot;
}
QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
SourceLocation Loc) {
if (BaseType->isDependentType())

View File

@@ -1212,6 +1212,76 @@ static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT,
const TypeSourceInfo *Rhs,
SourceLocation KeyLoc);
static ExprResult CheckConvertibilityForTypeTraits(
Sema &Self, const TypeSourceInfo *Lhs, const TypeSourceInfo *Rhs,
SourceLocation KeyLoc, llvm::BumpPtrAllocator &OpaqueExprAllocator) {
QualType LhsT = Lhs->getType();
QualType RhsT = Rhs->getType();
// C++0x [meta.rel]p4:
// Given the following function prototype:
//
// template <class T>
// typename add_rvalue_reference<T>::type create();
//
// the predicate condition for a template specialization
// is_convertible<From, To> shall be satisfied if and only if
// the return expression in the following code would be
// well-formed, including any implicit conversions to the return
// type of the function:
//
// To test() {
// return create<From>();
// }
//
// Access checking is performed as if in a context unrelated to To and
// From. Only the validity of the immediate context of the expression
// of the return-statement (including conversions to the return type)
// is considered.
//
// We model the initialization as a copy-initialization of a temporary
// of the appropriate type, which for this expression is identical to the
// return statement (since NRVO doesn't apply).
// Functions aren't allowed to return function or array types.
if (RhsT->isFunctionType() || RhsT->isArrayType())
return ExprError();
// A function definition requires a complete, non-abstract return type.
if (!Self.isCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT) ||
Self.isAbstractType(Rhs->getTypeLoc().getBeginLoc(), RhsT))
return ExprError();
// Compute the result of add_rvalue_reference.
if (LhsT->isObjectType() || LhsT->isFunctionType())
LhsT = Self.Context.getRValueReferenceType(LhsT);
// Build a fake source and destination for initialization.
InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
Expr *From = new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
OpaqueValueExpr(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
Expr::getValueKindForType(LhsT));
InitializationKind Kind =
InitializationKind::CreateCopy(KeyLoc, SourceLocation());
// Perform the initialization in an unevaluated context within a SFINAE
// trap at translation unit scope.
EnterExpressionEvaluationContext Unevaluated(
Self, Sema::ExpressionEvaluationContext::Unevaluated);
Sema::SFINAETrap SFINAE(Self, /*ForValidityCheck=*/true);
Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
InitializationSequence Init(Self, To, Kind, From);
if (Init.Failed())
return ExprError();
ExprResult Result = Init.Perform(Self, To, Kind, From);
if (Result.isInvalid() || SFINAE.hasErrorOccurred())
return ExprError();
return Result;
}
static APValue EvaluateSizeTTypeTrait(Sema &S, TypeTrait Kind,
SourceLocation KWLoc,
ArrayRef<TypeSourceInfo *> Args,
@@ -1372,8 +1442,9 @@ static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
S.Context.getPointerType(T.getNonReferenceType()));
TypeSourceInfo *UPtr = S.Context.CreateTypeSourceInfo(
S.Context.getPointerType(U.getNonReferenceType()));
return S.BuiltinIsConvertible(UPtr->getType(), TPtr->getType(),
RParenLoc);
return !CheckConvertibilityForTypeTraits(S, UPtr, TPtr, RParenLoc,
OpaqueExprAllocator)
.isInvalid();
}
if (Kind == clang::TT_IsNothrowConstructible)
@@ -1624,9 +1695,20 @@ static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT,
}
case BTT_IsConvertible:
case BTT_IsConvertibleTo:
case BTT_IsNothrowConvertible:
return Self.BuiltinIsConvertible(LhsT, RhsT, KeyLoc,
BTT == BTT_IsNothrowConvertible);
case BTT_IsNothrowConvertible: {
if (RhsT->isVoidType())
return LhsT->isVoidType();
llvm::BumpPtrAllocator OpaqueExprAllocator;
ExprResult Result = CheckConvertibilityForTypeTraits(Self, Lhs, Rhs, KeyLoc,
OpaqueExprAllocator);
if (Result.isInvalid())
return false;
if (BTT != BTT_IsNothrowConvertible)
return true;
return Self.canThrow(Result.get()) == CT_Cannot;
}
case BTT_IsAssignable:
case BTT_IsNothrowAssignable:

View File

@@ -1,136 +0,0 @@
// RUN: %clang_cc1 -triple x86_64-apple-darwin10 -fsyntax-only -verify -std=c++17 -Wno-vla-cxx-extension %s
// RUN: %clang_cc1 -triple x86_64-apple-darwin10 -fsyntax-only -verify -std=c++20 -Wno-vla-cxx-extension %s
#if !__has_builtin(__builtin_common_reference)
# error
#endif
// expected-note@*:* {{template <template <class, class, template <class> class, template <class> class> class, template <class ...> class, template <class> class, class, class ...>}}
void test() {
__builtin_common_reference<> a; // expected-error {{too few template arguments for template '__builtin_common_reference'}}
__builtin_common_reference<1> b; // expected-error {{template argument for template template parameter must be a class template or type alias template}}
__builtin_common_reference<int, 1> c; // expected-error {{template argument for template template parameter must be a class template or type alias template}}
}
struct empty_type {};
template <class T>
struct type_identity {
using type = T;
};
template <class...>
struct common_type;
template <class... Args>
using common_type_t = typename common_type<Args...>::type;
template <class, class, template <class> class, template <class> class>
struct basic_common_reference {};
template <class T, class U, template <class> class TX, template <class> class UX>
using basic_common_reference_t = typename basic_common_reference<T, U, TX, UX>::type;
void test_vla() {
int i = 4;
int VLA[i];
__builtin_common_reference<basic_common_reference_t, common_type_t, type_identity, empty_type, decltype(VLA)> d; // expected-error {{variably modified type 'decltype(VLA)' (aka 'int[i]') cannot be used as a template argument}}
}
template <class... Args>
using common_reference_base = __builtin_common_reference<basic_common_reference_t, common_type_t, type_identity, empty_type, Args...>;
template <class... Args>
struct common_reference : common_reference_base<Args...> {};
template <class... Args>
using common_reference_t = typename __builtin_common_reference<basic_common_reference_t, common_type_t, type_identity, empty_type, Args...>::type;
struct Incomplete;
template<>
struct common_type<Incomplete, Incomplete>;
static_assert(__is_same(common_reference_base<>, empty_type));
static_assert(__is_same(common_reference_base<Incomplete>, type_identity<Incomplete>));
static_assert(__is_same(common_reference_base<char>, type_identity<char>));
static_assert(__is_same(common_reference_base<int>, type_identity<int>));
static_assert(__is_same(common_reference_base<const int>, type_identity<const int>));
static_assert(__is_same(common_reference_base<volatile int>, type_identity<volatile int>));
static_assert(__is_same(common_reference_base<const volatile int>, type_identity<const volatile int>));
static_assert(__is_same(common_reference_base<int[]>, type_identity<int[]>));
static_assert(__is_same(common_reference_base<const int[]>, type_identity<const int[]>));
static_assert(__is_same(common_reference_base<void(&)()>, type_identity<void(&)()>));
static_assert(__is_same(common_reference_base<int[], int[]>, type_identity<int*>));
static_assert(__is_same(common_reference_base<int, int>, type_identity<int>));
static_assert(__is_same(common_reference_base<int, long>, type_identity<long>));
static_assert(__is_same(common_reference_base<long, int>, type_identity<long>));
static_assert(__is_same(common_reference_base<long, long>, type_identity<long>));
static_assert(__is_same(common_reference_base<const int, long>, type_identity<long>));
static_assert(__is_same(common_reference_base<const volatile int, long>, type_identity<long>));
static_assert(__is_same(common_reference_base<int, const long>, type_identity<long>));
static_assert(__is_same(common_reference_base<int, const volatile long>, type_identity<long>));
static_assert(__is_same(common_reference_base<int*, long*>, empty_type));
static_assert(__is_same(common_reference_base<const unsigned int *const &, const unsigned int *const &>, type_identity<const unsigned int *const &>));
static_assert(__is_same(common_reference_base<int, long, float>, type_identity<float>));
static_assert(__is_same(common_reference_base<unsigned, char, long>, type_identity<long>));
static_assert(__is_same(common_reference_base<long long, long long, long>, type_identity<long long>));
static_assert(__is_same(common_reference_base<int [[clang::address_space(1)]]>, type_identity<int [[clang::address_space(1)]]>));
static_assert(__is_same(common_reference_base<int [[clang::address_space(1)]], int>, type_identity<int>));
static_assert(__is_same(common_reference_base<long [[clang::address_space(1)]], int>, type_identity<long>));
static_assert(__is_same(common_reference_base<long [[clang::address_space(1)]], int [[clang::address_space(1)]]>, type_identity<long>));
static_assert(__is_same(common_reference_base<long [[clang::address_space(1)]], long [[clang::address_space(1)]]>, type_identity<long>));
static_assert(__is_same(common_reference_base<long [[clang::address_space(1)]], long [[clang::address_space(2)]]>, type_identity<long>));
struct S {};
struct T : S {};
struct U {};
static_assert(__is_same(common_reference_base<S&&, T&&>, type_identity<S&&>));
static_assert(__is_same(common_reference_base<int S::*, int S::*>, type_identity<int S::*>));
static_assert(__is_same(common_reference_base<int S::*, int T::*>, type_identity<int T::*>));
static_assert(__is_same(common_reference_base<int S::*, long S::*>, empty_type));
static_assert(__is_same(common_reference_base<int (S::*)(), int (S::*)()>, type_identity<int (S::*)()>));
static_assert(__is_same(common_reference_base<int (S::*)(), int (T::*)()>, type_identity<int (T::*)()>));
static_assert(__is_same(common_reference_base<int (S::*)(), long (S::*)()>, empty_type));
static_assert(__is_same(common_reference_base<int&, int&>, type_identity<int&>));
static_assert(__is_same(common_reference_base<int&, const int&>, type_identity<const int&>));
static_assert(__is_same(common_reference_base<volatile int&, const int&>, type_identity<const volatile int&>));
template <class T, class U>
struct my_pair;
template <class T1, class U1, class T2, class U2, template <class> class TX, template <class> class UX>
struct basic_common_reference<my_pair<T1, U1>, my_pair<T2, U2>, TX, UX> {
using type = my_pair<common_reference_t<TX<T1>, UX<T2>>, common_reference_t<TX<U1>, UX<U2>>>;
};
static_assert(__is_same(common_reference_base<my_pair<const int&, int&>, my_pair<int&, volatile int&>>, type_identity<my_pair<const int&, volatile int&>>));
static_assert(__is_same(common_reference_base<const my_pair<int, int>&, my_pair<int&, volatile int&>>, type_identity<my_pair<const int&, const volatile int&>>));
static_assert(__is_same(common_reference_base<const int&, const volatile int&>, type_identity<const volatile int&>));
static_assert(__is_same(common_reference_base<int&&, const volatile int&>, type_identity<int>));
static_assert(__is_same(common_reference_base<my_pair<int, int>&&, my_pair<int&, volatile int&>>, type_identity<my_pair<const int&, int>>));
static_assert(__is_same(common_reference_base<my_pair<int, int>&&, my_pair<int&, int>&&>, type_identity<my_pair<const int&, int&&>>));
struct conversion_operator {
operator volatile int&&() volatile;
};
static_assert(__is_same(common_reference_base<volatile conversion_operator&&, volatile int&&>, type_identity<volatile int&&>));
struct reference_wrapper {
reference_wrapper(int&);
operator int&() const;
};
static_assert(__is_same(common_reference_base<const reference_wrapper&, int&>, empty_type));

View File

@@ -18,37 +18,16 @@
#include <__type_traits/is_reference.h>
#include <__type_traits/remove_cvref.h>
#include <__type_traits/remove_reference.h>
#include <__type_traits/type_identity.h>
#include <__utility/declval.h>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
#if _LIBCPP_STD_VER >= 20
_LIBCPP_BEGIN_NAMESPACE_STD
template <class...>
struct _LIBCPP_NO_SPECIALIZATIONS common_reference;
template <class... _Types>
using common_reference_t = typename common_reference<_Types...>::type;
template <class, class, template <class> class, template <class> class>
struct basic_common_reference {};
# if __has_builtin(__builtin_common_reference)
template <class _Tp, class _Up, template <class> class _Tx, template <class> class _Ux>
using __basic_common_reference_t = basic_common_reference<_Tp, _Up, _Tx, _Ux>::type;
template <class... _Args>
struct _LIBCPP_NO_SPECIALIZATIONS common_reference
: __builtin_common_reference<__basic_common_reference_t, common_type_t, type_identity, __empty, _Args...> {};
# else
// common_reference
#if _LIBCPP_STD_VER >= 20
// Let COND_RES(X, Y) be:
template <class _Xp, class _Yp>
using __cond_res _LIBCPP_NODEBUG = decltype(false ? std::declval<_Xp (&)()>()() : std::declval<_Yp (&)()>()());
@@ -130,10 +109,19 @@ struct __common_ref {};
// Note C: For the common_reference trait applied to a parameter pack [...]
template <class...>
struct _LIBCPP_NO_SPECIALIZATIONS common_reference;
template <class... _Types>
using common_reference_t = typename common_reference<_Types...>::type;
template <class, class, template <class> class, template <class> class>
struct basic_common_reference {};
_LIBCPP_DIAGNOSTIC_PUSH
# if __has_warning("-Winvalid-specialization")
# if __has_warning("-Winvalid-specialization")
_LIBCPP_CLANG_DIAGNOSTIC_IGNORED("-Winvalid-specialization")
# endif
# endif
// bullet 1 - sizeof...(T) == 0
template <>
struct common_reference<> {};
@@ -207,10 +195,8 @@ _LIBCPP_DIAGNOSTIC_POP
template <class...>
struct _LIBCPP_NO_SPECIALIZATIONS common_reference {};
# endif // __has_builtin(__builtin_common_reference)
#endif // _LIBCPP_STD_VER >= 20
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_STD_VER >= 20
#endif // _LIBCPP___TYPE_TRAITS_COMMON_REFERENCE_H

View File

@@ -1517,7 +1517,6 @@ module std [system] {
header "__iterator/iterator_traits.h"
export std_core.type_traits.integral_constant
export std_core.type_traits.is_convertible
export std_core.type_traits.nat
}
module iterator_with_data { header "__iterator/iterator_with_data.h" }
module iterator { header "__iterator/iterator.h" }