mirror of
https://github.com/intel/llvm.git
synced 2026-01-25 19:44:38 +08:00
Revert "[MLIR][Vector] Generalize DropUnitDimFromElementwiseOps to non leading / trailing dimensions." (#97652)
Reverts llvm/llvm-project#92934 because it breaks some lowering. To repro: `mlir-opt -test-vector-transfer-flatten-patterns ~/repro.mlir` ```mlir func.func @unit_dim_folding(%arg0: vector<1x1xf32>) -> vector<1x1xf32> { %cst = arith.constant dense<0.000000e+00> : vector<1x1xf32> %0 = arith.mulf %arg0, %cst : vector<1x1xf32> return %0 : vector<1x1xf32> } ```
This commit is contained in:
@@ -1622,27 +1622,7 @@ struct ChainedReduction final : OpRewritePattern<vector::ReductionOp> {
|
||||
}
|
||||
};
|
||||
|
||||
// Scalable unit dimensions are not supported. Folding such dimensions would
|
||||
// require "shifting" the scalable flag onto some other fixed-width dim (e.g.
|
||||
// vector<[1]x4xf32> -> vector<[4]xf32>). This could be implemented in the
|
||||
// future.
|
||||
static VectorType dropNonScalableUnitDimFromType(VectorType inVecTy) {
|
||||
auto inVecShape = inVecTy.getShape();
|
||||
SmallVector<int64_t> newShape;
|
||||
SmallVector<bool> newScalableDims;
|
||||
for (auto [dim, isScalable] :
|
||||
llvm::zip_equal(inVecShape, inVecTy.getScalableDims())) {
|
||||
if (dim == 1 && !isScalable)
|
||||
continue;
|
||||
|
||||
newShape.push_back(dim);
|
||||
newScalableDims.push_back(isScalable);
|
||||
}
|
||||
|
||||
return VectorType::get(newShape, inVecTy.getElementType(), newScalableDims);
|
||||
}
|
||||
|
||||
/// For vectors with at least an unit dim, replaces:
|
||||
/// For vectors with either leading or trailing unit dim, replaces:
|
||||
/// elementwise(a, b)
|
||||
/// with:
|
||||
/// sc_a = shape_cast(a)
|
||||
@@ -1654,16 +1634,20 @@ static VectorType dropNonScalableUnitDimFromType(VectorType inVecTy) {
|
||||
/// required to be rank > 1.
|
||||
///
|
||||
/// Ex:
|
||||
/// ```
|
||||
/// %mul = arith.mulf %B_row, %A_row : vector<1x[4]xf32>
|
||||
/// %cast = vector.shape_cast %mul : vector<1x[4]xf32> to vector<[4]xf32>
|
||||
/// ```
|
||||
///
|
||||
/// gets converted to:
|
||||
///
|
||||
/// ```
|
||||
/// %B_row_sc = vector.shape_cast %B_row : vector<1x[4]xf32> to vector<[4]xf32>
|
||||
/// %A_row_sc = vector.shape_cast %A_row : vector<1x[4]xf32> to vector<[4]xf32>
|
||||
/// %mul = arith.mulf %B_row_sc, %A_row_sc : vector<[4]xf32>
|
||||
/// %cast_new = vector.shape_cast %mul : vector<[4]xf32> to vector<1x[4]xf32>
|
||||
/// %cast = vector.shape_cast %cast_new : vector<1x[4]xf32> to vector<[4]xf32>
|
||||
/// ```
|
||||
///
|
||||
/// Patterns for folding shape_casts should instantly eliminate `%cast_new` and
|
||||
/// `%cast`.
|
||||
@@ -1683,29 +1667,42 @@ struct DropUnitDimFromElementwiseOps final
|
||||
// guaranteed to have identical shapes (with some exceptions such as
|
||||
// `arith.select`) and it suffices to only check one of them.
|
||||
auto sourceVectorType = dyn_cast<VectorType>(op->getOperand(0).getType());
|
||||
if (!sourceVectorType || sourceVectorType.getRank() < 2)
|
||||
if (!sourceVectorType)
|
||||
return failure();
|
||||
if (sourceVectorType.getRank() < 2)
|
||||
return failure();
|
||||
|
||||
bool hasTrailingDimUnitFixed =
|
||||
((sourceVectorType.getShape().back() == 1) &&
|
||||
(!sourceVectorType.getScalableDims().back()));
|
||||
bool hasLeadingDimUnitFixed =
|
||||
((sourceVectorType.getShape().front() == 1) &&
|
||||
(!sourceVectorType.getScalableDims().front()));
|
||||
if (!hasLeadingDimUnitFixed && !hasTrailingDimUnitFixed)
|
||||
return failure();
|
||||
|
||||
// Drop leading/trailing unit dim by applying vector.shape_cast to all
|
||||
// operands
|
||||
int64_t dim = hasLeadingDimUnitFixed ? 0 : sourceVectorType.getRank() - 1;
|
||||
|
||||
SmallVector<Value> newOperands;
|
||||
auto loc = op->getLoc();
|
||||
for (auto operand : op->getOperands()) {
|
||||
auto opVectorType = cast<VectorType>(operand.getType());
|
||||
auto newVType = dropNonScalableUnitDimFromType(opVectorType);
|
||||
if (newVType == opVectorType)
|
||||
return rewriter.notifyMatchFailure(op, "No unit dimension to remove.");
|
||||
|
||||
VectorType newVType = VectorType::Builder(opVectorType).dropDim(dim);
|
||||
auto opSC = rewriter.create<vector::ShapeCastOp>(loc, newVType, operand);
|
||||
newOperands.push_back(opSC);
|
||||
}
|
||||
|
||||
VectorType newResultVectorType =
|
||||
dropNonScalableUnitDimFromType(resultVectorType);
|
||||
// Create an updated elementwise Op without unit dim.
|
||||
VectorType::Builder(resultVectorType).dropDim(dim);
|
||||
// Create an updated elementwise Op without leading/trailing unit dim
|
||||
Operation *elementwiseOp =
|
||||
rewriter.create(loc, op->getName().getIdentifier(), newOperands,
|
||||
newResultVectorType, op->getAttrs());
|
||||
|
||||
// Restore the unit dim by applying vector.shape_cast to the result.
|
||||
// Restore the leading/trailing unit dim by applying vector.shape_cast
|
||||
// to the result
|
||||
rewriter.replaceOpWithNewOp<ShapeCastOp>(op, resultVectorType,
|
||||
elementwiseOp->getResult(0));
|
||||
|
||||
|
||||
@@ -604,42 +604,6 @@ func.func @fold_unit_dims_entirely(%arg0 : vector<8xi32>,
|
||||
|
||||
// -----
|
||||
|
||||
func.func @fold_inner_unit_dim(%arg0 : vector<8x1x3xf128>,
|
||||
%arg1 : vector<1x8x3xf128>) -> vector<8x3xf128> {
|
||||
%sc_arg1 = vector.shape_cast %arg1 : vector<1x8x3xf128> to vector<8x1x3xf128>
|
||||
%mul = arith.mulf %arg0, %sc_arg1 : vector<8x1x3xf128>
|
||||
%res = vector.shape_cast %mul : vector<8x1x3xf128> to vector<8x3xf128>
|
||||
return %res : vector<8x3xf128>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func.func @fold_inner_unit_dim(
|
||||
// CHECK-SAME: %[[VAL_0:.*]]: vector<8x1x3xf128>,
|
||||
// CHECK-SAME: %[[VAL_1:.*]]: vector<1x8x3xf128>) -> vector<8x3xf128> {
|
||||
// CHECK: %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<8x1x3xf128> to vector<8x3xf128>
|
||||
// CHECK: %[[VAL_3:.*]] = vector.shape_cast %[[VAL_1]] : vector<1x8x3xf128> to vector<8x3xf128>
|
||||
// CHECK: %[[VAL_4:.*]] = arith.mulf %[[VAL_2]], %[[VAL_3]] : vector<8x3xf128>
|
||||
// CHECK: return %[[VAL_4]] : vector<8x3xf128>
|
||||
|
||||
// -----
|
||||
|
||||
func.func @fold_inner_unit_dim_scalable(%arg0 : vector<8x1x[1]x3xf128>,
|
||||
%arg1 : vector<1x8x[1]x3xf128>) -> vector<8x[1]x3xf128> {
|
||||
%sc_arg1 = vector.shape_cast %arg1 : vector<1x8x[1]x3xf128> to vector<8x1x[1]x3xf128>
|
||||
%mul = arith.mulf %arg0, %sc_arg1 : vector<8x1x[1]x3xf128>
|
||||
%res = vector.shape_cast %mul : vector<8x1x[1]x3xf128> to vector<8x[1]x3xf128>
|
||||
return %res : vector<8x[1]x3xf128>
|
||||
}
|
||||
|
||||
// CHECK-LABEL: func.func @fold_inner_unit_dim_scalable(
|
||||
// CHECK-SAME: %[[VAL_0:.*]]: vector<8x1x[1]x3xf128>,
|
||||
// CHECK-SAME: %[[VAL_1:.*]]: vector<1x8x[1]x3xf128>) -> vector<8x[1]x3xf128> {
|
||||
// CHECK: %[[VAL_2:.*]] = vector.shape_cast %[[VAL_0]] : vector<8x1x[1]x3xf128> to vector<8x[1]x3xf128>
|
||||
// CHECK: %[[VAL_3:.*]] = vector.shape_cast %[[VAL_1]] : vector<1x8x[1]x3xf128> to vector<8x[1]x3xf128>
|
||||
// CHECK: %[[VAL_4:.*]] = arith.mulf %[[VAL_2]], %[[VAL_3]] : vector<8x[1]x3xf128>
|
||||
// CHECK: return %[[VAL_4]] : vector<8x[1]x3xf128>
|
||||
|
||||
// -----
|
||||
|
||||
func.func @negative_out_of_bound_transfer_read(
|
||||
%arg : memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
|
||||
%c0 = arith.constant 0 : index
|
||||
|
||||
Reference in New Issue
Block a user