[BOLT][NFC] Move DynoStats out of BinaryFunction

Summary: Move DynoStats into separate source files.

(cherry picked from FBD15138883)
This commit is contained in:
Maksim Panchenko
2019-04-29 12:51:10 -07:00
parent 2b1523362e
commit f1dfd38dec
7 changed files with 437 additions and 363 deletions

View File

@@ -13,6 +13,7 @@
#include "BinaryBasicBlock.h"
#include "BinaryFunction.h"
#include "DataReader.h"
#include "DynoStats.h"
#include "MCPlusBuilder.h"
#include "llvm/ADT/edit_distance.h"
#include "llvm/ADT/StringRef.h"
@@ -90,14 +91,6 @@ DotToolTipCode("dot-tooltip-code",
cl::Hidden,
cl::cat(BoltCategory));
static cl::opt<uint32_t>
DynoStatsScale("dyno-stats-scale",
cl::desc("scale to be applied while reporting dyno stats"),
cl::Optional,
cl::init(1),
cl::Hidden,
cl::cat(BoltCategory));
cl::opt<JumpTableSupportLevel>
JumpTables("jump-tables",
cl::desc("jump tables support (default=basic)"),
@@ -193,7 +186,6 @@ bool shouldPrint(const BinaryFunction &Function) {
namespace llvm {
namespace bolt {
constexpr const char *DynoStats::Desc[];
constexpr unsigned BinaryFunction::MinAlign;
const char BinaryFunction::TimerGroupName[] = "buildfuncs";
const char BinaryFunction::TimerGroupDesc[] = "Build Binary Functions";
@@ -245,31 +237,6 @@ SMLoc findDebugLineInformationForInstructionAt(
} // namespace
bool DynoStats::operator<(const DynoStats &Other) const {
return std::lexicographical_compare(
&Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT],
&Other.Stats[FIRST_DYNO_STAT], &Other.Stats[LAST_DYNO_STAT]
);
}
bool DynoStats::operator==(const DynoStats &Other) const {
return std::equal(
&Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT],
&Other.Stats[FIRST_DYNO_STAT]
);
}
bool DynoStats::lessThan(const DynoStats &Other,
ArrayRef<Category> Keys) const {
return std::lexicographical_compare(
Keys.begin(), Keys.end(),
Keys.begin(), Keys.end(),
[this,&Other](const Category A, const Category) {
return Stats[A] < Other.Stats[A];
}
);
}
uint64_t BinaryFunction::Count = 0;
const std::string *
@@ -493,7 +460,7 @@ void BinaryFunction::print(raw_ostream &OS, std::string Annotation,
if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) {
OS << '\n';
DynoStats dynoStats = getDynoStats();
DynoStats dynoStats = getDynoStats(*this);
OS << dynoStats;
}
@@ -4284,145 +4251,6 @@ void BinaryFunction::printLoopInfo(raw_ostream &OS) const {
OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n";
}
DynoStats BinaryFunction::getDynoStats() const {
DynoStats Stats(/*PrintAArch64Stats*/ BC.isAArch64());
// Return empty-stats about the function we don't completely understand.
if (!isSimple() || !hasValidProfile())
return Stats;
// If the function was folded in non-relocation mode we keep its profile
// for optimization. However, it should be excluded from the dyno stats.
if (isFolded())
return Stats;
// Update enumeration of basic blocks for correct detection of branch'
// direction.
updateLayoutIndices();
for (const auto &BB : layout()) {
// The basic block execution count equals to the sum of incoming branch
// frequencies. This may deviate from the sum of outgoing branches of the
// basic block especially since the block may contain a function that
// does not return or a function that throws an exception.
const uint64_t BBExecutionCount = BB->getKnownExecutionCount();
// Ignore empty blocks and blocks that were not executed.
if (BB->getNumNonPseudos() == 0 || BBExecutionCount == 0)
continue;
// Count AArch64 linker-inserted veneers
if(isAArch64Veneer())
Stats[DynoStats::VENEER_CALLS_AARCH64] += getKnownExecutionCount();
// Count the number of calls by iterating through all instructions.
for (const auto &Instr : *BB) {
if (BC.MIB->isStore(Instr)) {
Stats[DynoStats::STORES] += BBExecutionCount;
}
if (BC.MIB->isLoad(Instr)) {
Stats[DynoStats::LOADS] += BBExecutionCount;
}
if (!BC.MIB->isCall(Instr))
continue;
uint64_t CallFreq = BBExecutionCount;
if (BC.MIB->getConditionalTailCall(Instr)) {
CallFreq =
BC.MIB->getAnnotationWithDefault<uint64_t>(Instr, "CTCTakenCount");
}
Stats[DynoStats::FUNCTION_CALLS] += CallFreq;
if (BC.MIB->isIndirectCall(Instr)) {
Stats[DynoStats::INDIRECT_CALLS] += CallFreq;
} else if (const auto *CallSymbol = BC.MIB->getTargetSymbol(Instr)) {
const auto *BF = BC.getFunctionForSymbol(CallSymbol);
if (BF && BF->isPLTFunction()) {
Stats[DynoStats::PLT_CALLS] += CallFreq;
// We don't process PLT functions and hence have to adjust relevant
// dynostats here for:
//
// jmp *GOT_ENTRY(%rip)
//
// NOTE: this is arch-specific.
Stats[DynoStats::FUNCTION_CALLS] += CallFreq;
Stats[DynoStats::INDIRECT_CALLS] += CallFreq;
Stats[DynoStats::LOADS] += CallFreq;
Stats[DynoStats::INSTRUCTIONS] += CallFreq;
}
}
}
Stats[DynoStats::INSTRUCTIONS] += BB->getNumNonPseudos() * BBExecutionCount;
// Jump tables.
const auto *LastInstr = BB->getLastNonPseudoInstr();
if (BC.MIB->getJumpTable(*LastInstr)) {
Stats[DynoStats::JUMP_TABLE_BRANCHES] += BBExecutionCount;
DEBUG(
static uint64_t MostFrequentJT;
if (BBExecutionCount > MostFrequentJT) {
MostFrequentJT = BBExecutionCount;
dbgs() << "BOLT-INFO: most frequently executed jump table is in "
<< "function " << *this << " in basic block " << BB->getName()
<< " executed totally " << BBExecutionCount << " times.\n";
}
);
continue;
}
// Update stats for branches.
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) {
continue;
}
if (!CondBranch && !UncondBranch) {
continue;
}
// Simple unconditional branch.
if (!CondBranch) {
Stats[DynoStats::UNCOND_BRANCHES] += BBExecutionCount;
continue;
}
// CTCs
if (BC.MIB->getConditionalTailCall(*CondBranch)) {
if (BB->branch_info_begin() != BB->branch_info_end())
Stats[DynoStats::UNCOND_BRANCHES] += BB->branch_info_begin()->Count;
continue;
}
// Conditional branch that could be followed by an unconditional branch.
auto TakenCount = BB->getTakenBranchInfo().Count;
if (TakenCount == COUNT_NO_PROFILE)
TakenCount = 0;
auto NonTakenCount = BB->getFallthroughBranchInfo().Count;
if (NonTakenCount == COUNT_NO_PROFILE)
NonTakenCount = 0;
if (isForwardBranch(BB, BB->getConditionalSuccessor(true))) {
Stats[DynoStats::FORWARD_COND_BRANCHES] += BBExecutionCount;
Stats[DynoStats::FORWARD_COND_BRANCHES_TAKEN] += TakenCount;
} else {
Stats[DynoStats::BACKWARD_COND_BRANCHES] += BBExecutionCount;
Stats[DynoStats::BACKWARD_COND_BRANCHES_TAKEN] += TakenCount;
}
if (UncondBranch) {
Stats[DynoStats::UNCOND_BRANCHES] += NonTakenCount;
}
}
return Stats;
}
bool BinaryFunction::isAArch64Veneer() const {
if (BasicBlocks.size() != 1)
return false;
@@ -4439,41 +4267,5 @@ bool BinaryFunction::isAArch64Veneer() const {
return true;
}
void DynoStats::print(raw_ostream &OS, const DynoStats *Other) const {
auto printStatWithDelta = [&](const std::string &Name, uint64_t Stat,
uint64_t OtherStat) {
OS << format("%'20lld : ", Stat * opts::DynoStatsScale) << Name;
if (Other) {
if (Stat != OtherStat) {
OtherStat = std::max(OtherStat, uint64_t(1)); // to prevent divide by 0
OS << format(" (%+.1f%%)",
( (float) Stat - (float) OtherStat ) * 100.0 /
(float) (OtherStat) );
} else {
OS << " (=)";
}
}
OS << '\n';
};
for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1;
Stat < DynoStats::LAST_DYNO_STAT;
++Stat) {
if (!PrintAArch64Stats && Stat == DynoStats::VENEER_CALLS_AARCH64)
continue;
printStatWithDelta(Desc[Stat], Stats[Stat], Other ? (*Other)[Stat] : 0);
}
}
void DynoStats::operator+=(const DynoStats &Other) {
for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1;
Stat < DynoStats::LAST_DYNO_STAT;
++Stat) {
Stats[Stat] += Other[Stat];
}
}
} // namespace bolt
} // namespace llvm

View File

@@ -54,108 +54,6 @@ namespace bolt {
using DWARFUnitLineTable = std::pair<DWARFUnit *,
const DWARFDebugLine::LineTable *>;
/// Class encapsulating runtime statistics about an execution unit.
class DynoStats {
#define DYNO_STATS\
D(FIRST_DYNO_STAT, "<reserved>", Fn)\
D(FORWARD_COND_BRANCHES, "executed forward branches", Fn)\
D(FORWARD_COND_BRANCHES_TAKEN, "taken forward branches", Fn)\
D(BACKWARD_COND_BRANCHES, "executed backward branches", Fn)\
D(BACKWARD_COND_BRANCHES_TAKEN, "taken backward branches", Fn)\
D(UNCOND_BRANCHES, "executed unconditional branches", Fn)\
D(FUNCTION_CALLS, "all function calls", Fn)\
D(INDIRECT_CALLS, "indirect calls", Fn)\
D(PLT_CALLS, "PLT calls", Fn)\
D(INSTRUCTIONS, "executed instructions", Fn)\
D(LOADS, "executed load instructions", Fn)\
D(STORES, "executed store instructions", Fn)\
D(JUMP_TABLE_BRANCHES, "taken jump table branches", Fn)\
D(ALL_BRANCHES, "total branches",\
Fadd(ALL_CONDITIONAL, UNCOND_BRANCHES))\
D(ALL_TAKEN, "taken branches",\
Fadd(TAKEN_CONDITIONAL, UNCOND_BRANCHES))\
D(NONTAKEN_CONDITIONAL, "non-taken conditional branches",\
Fsub(ALL_CONDITIONAL, TAKEN_CONDITIONAL))\
D(TAKEN_CONDITIONAL, "taken conditional branches",\
Fadd(FORWARD_COND_BRANCHES_TAKEN, BACKWARD_COND_BRANCHES_TAKEN))\
D(ALL_CONDITIONAL, "all conditional branches",\
Fadd(FORWARD_COND_BRANCHES, BACKWARD_COND_BRANCHES))\
D(VENEER_CALLS_AARCH64, "linker-inserted veneer calls", Fn)\
D(LAST_DYNO_STAT, "<reserved>", 0)
public:
#define D(name, ...) name,
enum Category : uint8_t { DYNO_STATS };
#undef D
private:
uint64_t Stats[LAST_DYNO_STAT+1];
bool PrintAArch64Stats;
#define D(name, desc, ...) desc,
static constexpr const char *Desc[] = { DYNO_STATS };
#undef D
public:
DynoStats(bool PrintAArch64Stats ) {
this->PrintAArch64Stats = PrintAArch64Stats;
for (auto Stat = FIRST_DYNO_STAT + 0; Stat < LAST_DYNO_STAT; ++Stat)
Stats[Stat] = 0;
}
uint64_t &operator[](size_t I) {
assert(I > FIRST_DYNO_STAT && I < LAST_DYNO_STAT &&
"index out of bounds");
return Stats[I];
}
uint64_t operator[](size_t I) const {
switch (I) {
#define D(name, desc, func) \
case name: \
return func;
#define Fn Stats[I]
#define Fadd(a, b) operator[](a) + operator[](b)
#define Fsub(a, b) operator[](a) - operator[](b)
#define F(a) operator[](a)
#define Radd(a, b) (a + b)
#define Rsub(a, b) (a - b)
DYNO_STATS
#undef Rsub
#undef Radd
#undef F
#undef Fsub
#undef Fadd
#undef Fn
#undef D
default:
llvm_unreachable("index out of bounds");
}
return 0;
}
void print(raw_ostream &OS, const DynoStats *Other = nullptr) const;
void operator+=(const DynoStats &Other);
bool operator<(const DynoStats &Other) const;
bool operator==(const DynoStats &Other) const;
bool operator!=(const DynoStats &Other) const { return !operator==(Other); }
bool lessThan(const DynoStats &Other, ArrayRef<Category> Keys) const;
static const char* Description(const Category C) {
return Desc[C];
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const DynoStats &Stats) {
Stats.print(OS, nullptr);
return OS;
}
DynoStats operator+(const DynoStats &A, const DynoStats &B);
/// Types of macro-fusion alignment corrections.
enum MacroFusionType {
MFT_NONE,
@@ -927,13 +825,6 @@ public:
/// Attempt to validate CFG invariants.
bool validateCFG() const;
/// Return dynostats for the function.
///
/// The function relies on branch instructions being in-sync with CFG for
/// branch instructions stats. Thus it is better to call it after
/// fixBranches().
DynoStats getDynoStats() const;
BinaryBasicBlock *getBasicBlockForLabel(const MCSymbol *Label) {
auto I = LabelToBB.find(Label);
return I == LabelToBB.end() ? nullptr : I->second;
@@ -2377,48 +2268,6 @@ public:
const FragmentInfo &cold() const { return ColdFragment; }
};
/// Return program-wide dynostats.
template <typename FuncsType>
inline DynoStats getDynoStats(const FuncsType &Funcs) {
bool IsAArch64 = Funcs.begin()->second.getBinaryContext().isAArch64();
DynoStats dynoStats(IsAArch64);
for (auto &BFI : Funcs) {
auto &BF = BFI.second;
if (BF.isSimple()) {
dynoStats += BF.getDynoStats();
}
}
return dynoStats;
}
/// Call a function with optional before and after dynostats printing.
template <typename FnType, typename FuncsType>
inline void
callWithDynoStats(FnType &&Func,
const FuncsType &Funcs,
StringRef Phase,
const bool Flag) {
bool IsAArch64 = Funcs.begin()->second.getBinaryContext().isAArch64();
DynoStats DynoStatsBefore(IsAArch64);
if (Flag) {
DynoStatsBefore = getDynoStats(Funcs);
}
Func();
if (Flag) {
const auto DynoStatsAfter = getDynoStats(Funcs);
const auto Changed = (DynoStatsAfter != DynoStatsBefore);
outs() << "BOLT-INFO: program-wide dynostats after running "
<< Phase << (Changed ? "" : " (no change)") << ":\n\n"
<< DynoStatsBefore << '\n';
if (Changed) {
DynoStatsAfter.print(outs(), &DynoStatsBefore);
}
outs() << '\n';
}
}
inline raw_ostream &operator<<(raw_ostream &OS,
const BinaryFunction &Function) {
OS << Function.getPrintName();

View File

@@ -76,6 +76,7 @@ add_llvm_tool(llvm-bolt
DataReader.cpp
DebugData.cpp
DWARFRewriter.cpp
DynoStats.cpp
Exceptions.cpp
ExecutableFileMemoryManager.cpp
Heatmap.cpp

253
bolt/src/DynoStats.cpp Normal file
View File

@@ -0,0 +1,253 @@
//===--- DynoStats.cpp ----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "DynoStats.h"
#include "BinaryBasicBlock.h"
#include "BinaryFunction.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <numeric>
#include <string>
#undef DEBUG_TYPE
#define DEBUG_TYPE "bolt"
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltCategory;
static cl::opt<uint32_t>
DynoStatsScale("dyno-stats-scale",
cl::desc("scale to be applied while reporting dyno stats"),
cl::Optional,
cl::init(1),
cl::Hidden,
cl::cat(BoltCategory));
} // namespace opts
namespace llvm {
namespace bolt {
constexpr const char *DynoStats::Desc[];
bool DynoStats::operator<(const DynoStats &Other) const {
return std::lexicographical_compare(
&Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT],
&Other.Stats[FIRST_DYNO_STAT], &Other.Stats[LAST_DYNO_STAT]
);
}
bool DynoStats::operator==(const DynoStats &Other) const {
return std::equal(
&Stats[FIRST_DYNO_STAT], &Stats[LAST_DYNO_STAT],
&Other.Stats[FIRST_DYNO_STAT]
);
}
bool DynoStats::lessThan(const DynoStats &Other,
ArrayRef<Category> Keys) const {
return std::lexicographical_compare(
Keys.begin(), Keys.end(),
Keys.begin(), Keys.end(),
[this,&Other](const Category A, const Category) {
return Stats[A] < Other.Stats[A];
}
);
}
void DynoStats::print(raw_ostream &OS, const DynoStats *Other) const {
auto printStatWithDelta = [&](const std::string &Name, uint64_t Stat,
uint64_t OtherStat) {
OS << format("%'20lld : ", Stat * opts::DynoStatsScale) << Name;
if (Other) {
if (Stat != OtherStat) {
OtherStat = std::max(OtherStat, uint64_t(1)); // to prevent divide by 0
OS << format(" (%+.1f%%)",
( (float) Stat - (float) OtherStat ) * 100.0 /
(float) (OtherStat) );
} else {
OS << " (=)";
}
}
OS << '\n';
};
for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1;
Stat < DynoStats::LAST_DYNO_STAT;
++Stat) {
if (!PrintAArch64Stats && Stat == DynoStats::VENEER_CALLS_AARCH64)
continue;
printStatWithDelta(Desc[Stat], Stats[Stat], Other ? (*Other)[Stat] : 0);
}
}
void DynoStats::operator+=(const DynoStats &Other) {
for (auto Stat = DynoStats::FIRST_DYNO_STAT + 1;
Stat < DynoStats::LAST_DYNO_STAT;
++Stat) {
Stats[Stat] += Other[Stat];
}
}
DynoStats getDynoStats(const BinaryFunction &BF) {
auto &BC = BF.getBinaryContext();
DynoStats Stats(/*PrintAArch64Stats*/ BC.isAArch64());
// Return empty-stats about the function we don't completely understand.
if (!BF.isSimple() || !BF.hasValidProfile())
return Stats;
// If the function was folded in non-relocation mode we keep its profile
// for optimization. However, it should be excluded from the dyno stats.
if (BF.isFolded())
return Stats;
// Update enumeration of basic blocks for correct detection of branch'
// direction.
BF.updateLayoutIndices();
for (const auto &BB : BF.layout()) {
// The basic block execution count equals to the sum of incoming branch
// frequencies. This may deviate from the sum of outgoing branches of the
// basic block especially since the block may contain a function that
// does not return or a function that throws an exception.
const uint64_t BBExecutionCount = BB->getKnownExecutionCount();
// Ignore empty blocks and blocks that were not executed.
if (BB->getNumNonPseudos() == 0 || BBExecutionCount == 0)
continue;
// Count AArch64 linker-inserted veneers
if(BF.isAArch64Veneer())
Stats[DynoStats::VENEER_CALLS_AARCH64] += BF.getKnownExecutionCount();
// Count the number of calls by iterating through all instructions.
for (const auto &Instr : *BB) {
if (BC.MIB->isStore(Instr)) {
Stats[DynoStats::STORES] += BBExecutionCount;
}
if (BC.MIB->isLoad(Instr)) {
Stats[DynoStats::LOADS] += BBExecutionCount;
}
if (!BC.MIB->isCall(Instr))
continue;
uint64_t CallFreq = BBExecutionCount;
if (BC.MIB->getConditionalTailCall(Instr)) {
CallFreq =
BC.MIB->getAnnotationWithDefault<uint64_t>(Instr, "CTCTakenCount");
}
Stats[DynoStats::FUNCTION_CALLS] += CallFreq;
if (BC.MIB->isIndirectCall(Instr)) {
Stats[DynoStats::INDIRECT_CALLS] += CallFreq;
} else if (const auto *CallSymbol = BC.MIB->getTargetSymbol(Instr)) {
const auto *BF = BC.getFunctionForSymbol(CallSymbol);
if (BF && BF->isPLTFunction()) {
Stats[DynoStats::PLT_CALLS] += CallFreq;
// We don't process PLT functions and hence have to adjust relevant
// dynostats here for:
//
// jmp *GOT_ENTRY(%rip)
//
// NOTE: this is arch-specific.
Stats[DynoStats::FUNCTION_CALLS] += CallFreq;
Stats[DynoStats::INDIRECT_CALLS] += CallFreq;
Stats[DynoStats::LOADS] += CallFreq;
Stats[DynoStats::INSTRUCTIONS] += CallFreq;
}
}
}
Stats[DynoStats::INSTRUCTIONS] += BB->getNumNonPseudos() * BBExecutionCount;
// Jump tables.
const auto *LastInstr = BB->getLastNonPseudoInstr();
if (BC.MIB->getJumpTable(*LastInstr)) {
Stats[DynoStats::JUMP_TABLE_BRANCHES] += BBExecutionCount;
DEBUG(
static uint64_t MostFrequentJT;
if (BBExecutionCount > MostFrequentJT) {
MostFrequentJT = BBExecutionCount;
dbgs() << "BOLT-INFO: most frequently executed jump table is in "
<< "function " << BF << " in basic block " << BB->getName()
<< " executed totally " << BBExecutionCount << " times.\n";
}
);
continue;
}
// Update stats for branches.
const MCSymbol *TBB = nullptr;
const MCSymbol *FBB = nullptr;
MCInst *CondBranch = nullptr;
MCInst *UncondBranch = nullptr;
if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch)) {
continue;
}
if (!CondBranch && !UncondBranch) {
continue;
}
// Simple unconditional branch.
if (!CondBranch) {
Stats[DynoStats::UNCOND_BRANCHES] += BBExecutionCount;
continue;
}
// CTCs
if (BC.MIB->getConditionalTailCall(*CondBranch)) {
if (BB->branch_info_begin() != BB->branch_info_end())
Stats[DynoStats::UNCOND_BRANCHES] += BB->branch_info_begin()->Count;
continue;
}
// Conditional branch that could be followed by an unconditional branch.
auto TakenCount = BB->getTakenBranchInfo().Count;
if (TakenCount == BinaryBasicBlock::COUNT_NO_PROFILE)
TakenCount = 0;
auto NonTakenCount = BB->getFallthroughBranchInfo().Count;
if (NonTakenCount == BinaryBasicBlock::COUNT_NO_PROFILE)
NonTakenCount = 0;
if (BF.isForwardBranch(BB, BB->getConditionalSuccessor(true))) {
Stats[DynoStats::FORWARD_COND_BRANCHES] += BBExecutionCount;
Stats[DynoStats::FORWARD_COND_BRANCHES_TAKEN] += TakenCount;
} else {
Stats[DynoStats::BACKWARD_COND_BRANCHES] += BBExecutionCount;
Stats[DynoStats::BACKWARD_COND_BRANCHES_TAKEN] += TakenCount;
}
if (UncondBranch) {
Stats[DynoStats::UNCOND_BRANCHES] += NonTakenCount;
}
}
return Stats;
}
} // namespace bolt
} // namespace llvm

178
bolt/src/DynoStats.h Normal file
View File

@@ -0,0 +1,178 @@
//===--- DynoStats.h ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_BOLT_DYNO_STATS_H
#define LLVM_TOOLS_LLVM_BOLT_DYNO_STATS_H
#include "BinaryFunction.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
namespace bolt {
/// Class encapsulating runtime statistics about an execution unit.
class DynoStats {
#define DYNO_STATS\
D(FIRST_DYNO_STAT, "<reserved>", Fn)\
D(FORWARD_COND_BRANCHES, "executed forward branches", Fn)\
D(FORWARD_COND_BRANCHES_TAKEN, "taken forward branches", Fn)\
D(BACKWARD_COND_BRANCHES, "executed backward branches", Fn)\
D(BACKWARD_COND_BRANCHES_TAKEN, "taken backward branches", Fn)\
D(UNCOND_BRANCHES, "executed unconditional branches", Fn)\
D(FUNCTION_CALLS, "all function calls", Fn)\
D(INDIRECT_CALLS, "indirect calls", Fn)\
D(PLT_CALLS, "PLT calls", Fn)\
D(INSTRUCTIONS, "executed instructions", Fn)\
D(LOADS, "executed load instructions", Fn)\
D(STORES, "executed store instructions", Fn)\
D(JUMP_TABLE_BRANCHES, "taken jump table branches", Fn)\
D(ALL_BRANCHES, "total branches",\
Fadd(ALL_CONDITIONAL, UNCOND_BRANCHES))\
D(ALL_TAKEN, "taken branches",\
Fadd(TAKEN_CONDITIONAL, UNCOND_BRANCHES))\
D(NONTAKEN_CONDITIONAL, "non-taken conditional branches",\
Fsub(ALL_CONDITIONAL, TAKEN_CONDITIONAL))\
D(TAKEN_CONDITIONAL, "taken conditional branches",\
Fadd(FORWARD_COND_BRANCHES_TAKEN, BACKWARD_COND_BRANCHES_TAKEN))\
D(ALL_CONDITIONAL, "all conditional branches",\
Fadd(FORWARD_COND_BRANCHES, BACKWARD_COND_BRANCHES))\
D(VENEER_CALLS_AARCH64, "linker-inserted veneer calls", Fn)\
D(LAST_DYNO_STAT, "<reserved>", 0)
public:
#define D(name, ...) name,
enum Category : uint8_t { DYNO_STATS };
#undef D
private:
uint64_t Stats[LAST_DYNO_STAT+1];
bool PrintAArch64Stats;
#define D(name, desc, ...) desc,
static constexpr const char *Desc[] = { DYNO_STATS };
#undef D
public:
DynoStats(bool PrintAArch64Stats) {
this->PrintAArch64Stats = PrintAArch64Stats;
for (auto Stat = FIRST_DYNO_STAT + 0; Stat < LAST_DYNO_STAT; ++Stat)
Stats[Stat] = 0;
}
uint64_t &operator[](size_t I) {
assert(I > FIRST_DYNO_STAT && I < LAST_DYNO_STAT &&
"index out of bounds");
return Stats[I];
}
uint64_t operator[](size_t I) const {
switch (I) {
#define D(name, desc, func) \
case name: \
return func;
#define Fn Stats[I]
#define Fadd(a, b) operator[](a) + operator[](b)
#define Fsub(a, b) operator[](a) - operator[](b)
#define F(a) operator[](a)
#define Radd(a, b) (a + b)
#define Rsub(a, b) (a - b)
DYNO_STATS
#undef Rsub
#undef Radd
#undef F
#undef Fsub
#undef Fadd
#undef Fn
#undef D
default:
llvm_unreachable("index out of bounds");
}
return 0;
}
void print(raw_ostream &OS, const DynoStats *Other = nullptr) const;
void operator+=(const DynoStats &Other);
bool operator<(const DynoStats &Other) const;
bool operator==(const DynoStats &Other) const;
bool operator!=(const DynoStats &Other) const { return !operator==(Other); }
bool lessThan(const DynoStats &Other, ArrayRef<Category> Keys) const;
static const char* Description(const Category C) {
return Desc[C];
}
};
inline raw_ostream &operator<<(raw_ostream &OS, const DynoStats &Stats) {
Stats.print(OS, nullptr);
return OS;
}
DynoStats operator+(const DynoStats &A, const DynoStats &B);
/// Return dynostats for the function.
///
/// The function relies on branch instructions being in-sync with CFG for
/// branch instructions stats. Thus it is better to call it after
/// fixBranches().
DynoStats getDynoStats(const BinaryFunction &BF);
/// Return program-wide dynostats.
template <typename FuncsType>
inline DynoStats getDynoStats(const FuncsType &Funcs) {
bool IsAArch64 = Funcs.begin()->second.getBinaryContext().isAArch64();
DynoStats dynoStats(IsAArch64);
for (auto &BFI : Funcs) {
auto &BF = BFI.second;
if (BF.isSimple()) {
dynoStats += getDynoStats(BF);
}
}
return dynoStats;
}
/// Call a function with optional before and after dynostats printing.
template <typename FnType, typename FuncsType>
inline void
callWithDynoStats(FnType &&Func,
const FuncsType &Funcs,
StringRef Phase,
const bool Flag) {
bool IsAArch64 = Funcs.begin()->second.getBinaryContext().isAArch64();
DynoStats DynoStatsBefore(IsAArch64);
if (Flag) {
DynoStatsBefore = getDynoStats(Funcs);
}
Func();
if (Flag) {
const auto DynoStatsAfter = getDynoStats(Funcs);
const auto Changed = (DynoStatsAfter != DynoStatsBefore);
outs() << "BOLT-INFO: program-wide dynostats after running "
<< Phase << (Changed ? "" : " (no change)") << ":\n\n"
<< DynoStatsBefore << '\n';
if (Changed) {
DynoStatsAfter.print(outs(), &DynoStatsBefore);
}
outs() << '\n';
}
}
} // namespace bolt
} // namespace llvm
#endif

View File

@@ -1331,7 +1331,7 @@ PrintProgramStats::runOnFunctions(BinaryContext &BC) {
const auto &BF = BFI.second;
if (shouldOptimize(BF) && BF.hasValidProfile()) {
Functions.push_back(&BF);
Stats.emplace(&BF, BF.getDynoStats());
Stats.emplace(&BF, getDynoStats(BF));
}
}
@@ -1383,7 +1383,7 @@ PrintProgramStats::runOnFunctions(BinaryContext &BC) {
outs() << " are:\n";
auto SFI = Functions.begin();
for (unsigned I = 0; I < 100 && SFI != Functions.end(); ++SFI, ++I) {
const auto Stats = (*SFI)->getDynoStats();
const auto Stats = getDynoStats(**SFI);
outs() << " " << **SFI;
if (!SortAll) {
outs() << " (";

View File

@@ -16,6 +16,7 @@
#include "BinaryContext.h"
#include "BinaryFunction.h"
#include "DynoStats.h"
#include "HFSort.h"
#include "llvm/Support/CommandLine.h"