A trace might contain events traced during the target's execution. For example, a thread might be paused for some period of time due to context switches or breakpoints, which actually force a context switch. Not only that, a trace might be paused because the CPU decides to trace only a specific part of the target, like the address filtering provided by intel pt, which will cause pause events. Besides this case, other kinds of events might exist. This patch adds the method `TraceCursor::GetEvents()`` that returns the list of events that happened right before the instruction being pointed at by the cursor. Some refactors were done to make this change simpler. Besides this new API, the instruction dumper now supports the -e flag which shows pause events, like in the following example, where pauses happened due to breakpoints. ``` thread #1: tid = 2717361 a.out`main + 20 at main.cpp:27:20 0: 0x00000000004023d9 leaq -0x1200(%rbp), %rax [paused] 1: 0x00000000004023e0 movq %rax, %rdi [paused] 2: 0x00000000004023e3 callq 0x403a62 ; std::vector<int, std::allocator<int> >::vector at stl_vector.h:391:7 a.out`std::vector<int, std::allocator<int> >::vector() at stl_vector.h:391:7 3: 0x0000000000403a62 pushq %rbp 4: 0x0000000000403a63 movq %rsp, %rbp ``` The `dump info` command has also been updated and now it shows the number of instructions that have associated events. Differential Revision: https://reviews.llvm.org/D123982
The LLVM Compiler Infrastructure
This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting Started with the LLVM System
Taken from here.
Overview
Welcome to the LLVM project!
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.
This is an example work-flow and configuration to get and build the LLVM source:
-
Checkout LLVM (including related sub-projects like Clang):
-
git clone https://github.com/llvm/llvm-project.git -
Or, on windows,
git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git
-
-
Configure and build LLVM and Clang:
-
cd llvm-project -
cmake -S llvm -B build -G <generator> [options]Some common build system generators are:
Ninja--- for generating Ninja build files. Most llvm developers use Ninja.Unix Makefiles--- for generating make-compatible parallel makefiles.Visual Studio--- for generating Visual Studio projects and solutions.Xcode--- for generating Xcode projects.
Some common options:
-
-DLLVM_ENABLE_PROJECTS='...'and-DLLVM_ENABLE_RUNTIMES='...'--- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build.LLVM_ENABLE_PROJECTScan include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl.LLVM_ENABLE_RUNTIMEScan include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either inLLVM_ENABLE_PROJECTSor inLLVM_ENABLE_RUNTIMES.For example, to build LLVM, Clang, libcxx, and libcxxabi, use
-DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi". -
-DCMAKE_INSTALL_PREFIX=directory--- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default/usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like/usris not advised, but/usr/localis fine. -
-DCMAKE_BUILD_TYPE=type--- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug. -
-DLLVM_ENABLE_ASSERTIONS=On--- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).
-
cmake --build build [-- [options] <target>]or your build system specified above directly.-
The default target (i.e.
ninjaormake) will build all of LLVM. -
The
check-alltarget (i.e.ninja check-all) will run the regression tests to ensure everything is in working order. -
CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own
check-<project>target. -
Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for
make, use the option-j NNN, whereNNNis the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with-j$(nproc).
-
-
For more information see CMake.
-
Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.
Getting in touch
Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.