Ryosuke Niwa 2c6424e691 [webkit.UncountedLambdaCapturesChecker] Ignore trivial functions and [[clang::noescape]]. (#114897)
This PR makes webkit.UncountedLambdaCapturesChecker ignore trivial
functions as well as the one being passed to an argument with
[[clang::noescape]] attribute. This dramatically reduces the false
positive rate for this checker.

To do this, this PR replaces VisitLambdaExpr in favor of checking
lambdas via VisitDeclRefExpr and VisitCallExpr. The idea is that if a
lambda is defined but never called or stored somewhere, then capturing
whatever variable in such a lambda is harmless.

VisitCallExpr explicitly looks for direct invocation of lambdas and
registers its DeclRefExpr to be ignored in VisitDeclRefExpr. If a lambda
is being passed to a function, it checks whether its argument is
annotated with [[clang::noescape]]. If it's not annotated such, it
checks captures for their safety.

Because WTF::switchOn could not be annotated with [[clang::noescape]] as
function type parameters are variadic template function so we hard-code
this function into the checker.

In order to check whether "this" pointer is ref-counted type or not, we
override TraverseDecl and record the most recent method's declaration.

In addition, this PR fixes a bug in isUnsafePtr that it was erroneously
checking whether std::nullopt was returned by isUncounted and
isUnchecked as opposed to the actual boolean value.

Finally, this PR also converts the accompanying test to use -verify and
adds a bunch of tests.
2024-11-12 09:46:28 -08:00
2024-11-12 09:39:57 -08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
No description provided
Readme 5.5 GiB
Languages
LLVM 41.5%
C++ 31.7%
C 13%
Assembly 9.1%
MLIR 1.5%
Other 2.8%