Peter Hawkins 41bd35b58b [mlir python] Port Python core code to nanobind. (#118583)
Why? https://nanobind.readthedocs.io/en/latest/why.html says it better
than I can, but my primary motivation for this change is to improve MLIR
IR construction time from JAX.

For a complicated Google-internal LLM model in JAX, this change improves
the MLIR
lowering time by around 5s (out of around 30s), which is a significant
speedup for simply switching binding frameworks.

To a large extent, this is a mechanical change, for instance changing
`pybind11::`
to `nanobind::`.

Notes:
* this PR needs Nanobind 2.4.0, because it needs a bug fix
(https://github.com/wjakob/nanobind/pull/806) that landed in that
release.
* this PR does not port the in-tree dialect extension modules. They can
be ported in a future PR.
* I removed the py::sibling() annotations from def_static and def_class
in `PybindAdapters.h`. These ask pybind11 to try to form an overload
with an existing method, but it's not possible to form mixed
pybind11/nanobind overloads this ways and the parent class is now
defined in nanobind. Better solutions may be possible here.
* nanobind does not contain an exact equivalent of pybind11's buffer
protocol support. It was not hard to add a nanobind implementation of a
similar API.
* nanobind is pickier about casting to std::vector<bool>, expecting that
the input is a sequence of bool types, not truthy values. In a couple of
places I added code to support truthy values during casting.
* nanobind distinguishes bytes (`nb::bytes`) from strings (e.g.,
`std::string`). This required nb::bytes overloads in a few places.
2024-12-18 11:16:11 -08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
No description provided
Readme 5.5 GiB
Languages
LLVM 41.5%
C++ 31.7%
C 13%
Assembly 9.1%
MLIR 1.5%
Other 2.8%