Paolo Severini 4bafceced6 [LLDB] Add ObjectFileWasm plugin for WebAssembly debugging
Summary:
This is the first in a series of patches to enable LLDB debugging of
WebAssembly targets.

Current versions of Clang emit (partial) DWARF debug information in WebAssembly
modules and we can leverage this debug information to give LLDB the ability to
do source-level debugging of Wasm code that runs in a WebAssembly engine.

A way to do this could be to use the remote debugging functionalities provided
by LLDB via the GDB-remote protocol. Remote debugging can indeed be useful not
only to connect a debugger to a process running on a remote machine, but also to
connect the debugger to a managed VM or script engine that runs locally,
provided that the engine implements a GDB-remote stub that offers the ability to
access the engine runtime internal state.

To make this work, the GDB-remote protocol would need to be extended with a few
Wasm-specific custom query commands, used to access aspects of the Wasm engine
state (like the Wasm memory, Wasm local and global variables, and so on).
Furthermore, the DWARF format would need to be enriched with a few Wasm-specific
extensions, here detailed: https://yurydelendik.github.io/webassembly-dwarf.

This CL introduce classes **ObjectFileWasm**, a file plugin to represent a Wasm
module loaded in a debuggee process. It knows how to parse Wasm modules and
store the Code section and the DWARF-specific sections.

Reviewers: jasonmolenda, clayborg, labath

Tags: #lldb

Differential Revision: https://reviews.llvm.org/D71575
2020-01-15 16:25:35 -08:00
2020-01-15 15:46:57 -08:00
2020-01-15 13:38:01 +01:00
2020-01-15 13:38:01 +01:00

The LLVM Compiler Infrastructure

This directory and its subdirectories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and runtime environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective C, and Objective C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example workflow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related subprojects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • mkdir build

    • cd build

    • cmake -G <generator> [options] ../llvm

      Some common generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM subprojects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full pathname of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • Run your build tool of choice!

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate build targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use make -j NNN (NNN is the number of parallel jobs, use e.g. number of CPUs you have.)

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Description
No description provided
Readme 5.2 GiB
Languages
LLVM 41.5%
C++ 31.7%
C 13%
Assembly 9.1%
MLIR 1.5%
Other 2.8%