Jason Molenda e4c83b7b11 [lldb][NFC] Change ObjectFile argument type (#171574)
The ObjectFile plugin interface accepts an optional DataBufferSP
argument. If the caller has the contents of the binary, it can provide
this in that DataBufferSP. The ObjectFile subclasses in their
CreateInstance methods will fill in the DataBufferSP with the actual
binary contents if it is not set.
ObjectFile base class creates an ivar DataExtractor from the
DataBufferSP passed in.

My next patch will be a caller that creates a VirtualDataExtractor with
the binary data, and needs to pass that in to the ObjectFile plugin,
instead of the bag-of-bytes DataBufferSP. It builds on the previous
patch changing ObjectFile's ivar from DataExtractor to DataExtractorSP
so I could pass in a subclass in the shared ptr. And it will be using
the VirtualDataExtractor that Jonas added in
https://github.com/llvm/llvm-project/pull/168802

No behavior is changed by the patch; we're simply moving the creation of
the DataExtractor to the caller, instead of a DataBuffer that is
immediately used to set up the ObjectFile DataExtractor. The patch is a
bit complicated because all of the ObjectFile subclasses have to
initialize their DataExtractor to pass in to the base class.

I ran the testsuite on macOS and on AArch64 Ubutnu. (btw David, I ran it
under qemu on my M4 mac with SME-no-SVE again, Ubuntu 25.10, checked
lshw(1) cpu capabilities, and qemu doesn't seem to be virtualizing the
SME, that explains why the testsuite passes)

rdar://148939795

---------

Co-authored-by: Jonas Devlieghere <jonas@devlieghere.com>
2025-12-11 10:08:56 -08:00

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
No description provided
Readme 5.4 GiB
Languages
LLVM 41.5%
C++ 31.7%
C 13%
Assembly 9.1%
MLIR 1.5%
Other 2.8%