Files
llvm/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp
Jason Molenda e4c83b7b11 [lldb][NFC] Change ObjectFile argument type (#171574)
The ObjectFile plugin interface accepts an optional DataBufferSP
argument. If the caller has the contents of the binary, it can provide
this in that DataBufferSP. The ObjectFile subclasses in their
CreateInstance methods will fill in the DataBufferSP with the actual
binary contents if it is not set.
ObjectFile base class creates an ivar DataExtractor from the
DataBufferSP passed in.

My next patch will be a caller that creates a VirtualDataExtractor with
the binary data, and needs to pass that in to the ObjectFile plugin,
instead of the bag-of-bytes DataBufferSP. It builds on the previous
patch changing ObjectFile's ivar from DataExtractor to DataExtractorSP
so I could pass in a subclass in the shared ptr. And it will be using
the VirtualDataExtractor that Jonas added in
https://github.com/llvm/llvm-project/pull/168802

No behavior is changed by the patch; we're simply moving the creation of
the DataExtractor to the caller, instead of a DataBuffer that is
immediately used to set up the ObjectFile DataExtractor. The patch is a
bit complicated because all of the ObjectFile subclasses have to
initialize their DataExtractor to pass in to the base class.

I ran the testsuite on macOS and on AArch64 Ubutnu. (btw David, I ran it
under qemu on my M4 mac with SME-no-SVE again, Ubuntu 25.10, checked
lshw(1) cpu capabilities, and qemu doesn't seem to be virtualizing the
SME, that explains why the testsuite passes)

rdar://148939795

---------

Co-authored-by: Jonas Devlieghere <jonas@devlieghere.com>
2025-12-11 10:08:56 -08:00

780 lines
28 KiB
C++

//===-- GDBRemoteRegisterContext.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "GDBRemoteRegisterContext.h"
#include "ProcessGDBRemote.h"
#include "ProcessGDBRemoteLog.h"
#include "ThreadGDBRemote.h"
#include "Utility/ARM_DWARF_Registers.h"
#include "Utility/ARM_ehframe_Registers.h"
#include "lldb/Core/Architecture.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Scalar.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/StringExtractorGDBRemote.h"
#include <memory>
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_gdb_remote;
// GDBRemoteRegisterContext constructor
GDBRemoteRegisterContext::GDBRemoteRegisterContext(
ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once,
bool write_all_at_once)
: RegisterContext(thread, concrete_frame_idx),
m_reg_info_sp(std::move(reg_info_sp)), m_reg_valid(), m_reg_data(),
m_read_all_at_once(read_all_at_once),
m_write_all_at_once(write_all_at_once), m_gpacket_cached(false) {
// Resize our vector of bools to contain one bool for every register. We will
// use these boolean values to know when a register value is valid in
// m_reg_data.
m_reg_valid.resize(m_reg_info_sp->GetNumRegisters());
// Make a heap based buffer that is big enough to store all registers
DataBufferSP reg_data_sp(
new DataBufferHeap(m_reg_info_sp->GetRegisterDataByteSize(), 0));
m_reg_data.SetData(reg_data_sp);
m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
}
// Destructor
GDBRemoteRegisterContext::~GDBRemoteRegisterContext() = default;
void GDBRemoteRegisterContext::InvalidateAllRegisters() {
SetAllRegisterValid(false);
}
void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
m_gpacket_cached = b;
std::vector<bool>::iterator pos, end = m_reg_valid.end();
for (pos = m_reg_valid.begin(); pos != end; ++pos)
*pos = b;
}
size_t GDBRemoteRegisterContext::GetRegisterCount() {
return m_reg_info_sp->GetNumRegisters();
}
const RegisterInfo *
GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
return m_reg_info_sp->GetRegisterInfoAtIndex(reg);
}
size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
return m_reg_info_sp->GetNumRegisterSets();
}
const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
return m_reg_info_sp->GetRegisterSet(reg_set);
}
bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
RegisterValue &value) {
// Read the register
if (ReadRegisterBytes(reg_info)) {
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (m_reg_valid[reg] == false)
return false;
if (reg_info->value_regs &&
reg_info->value_regs[0] != LLDB_INVALID_REGNUM &&
reg_info->value_regs[1] != LLDB_INVALID_REGNUM) {
std::vector<char> combined_data;
uint32_t offset = 0;
for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
const RegisterInfo *parent_reg = GetRegisterInfo(
eRegisterKindLLDB, reg_info->value_regs[i]);
if (!parent_reg)
return false;
combined_data.resize(offset + parent_reg->byte_size);
if (m_reg_data.CopyData(parent_reg->byte_offset, parent_reg->byte_size,
combined_data.data() + offset) !=
parent_reg->byte_size)
return false;
offset += parent_reg->byte_size;
}
Status error;
return value.SetFromMemoryData(
*reg_info, combined_data.data(), combined_data.size(),
m_reg_data.GetByteOrder(), error) == combined_data.size();
} else {
const bool partial_data_ok = false;
Status error(value.SetValueFromData(
*reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
return error.Success();
}
}
return false;
}
bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
uint32_t reg, llvm::ArrayRef<uint8_t> data) {
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
if (reg_info == nullptr)
return false;
// Invalidate if needed
InvalidateIfNeeded(false);
const size_t reg_byte_size = reg_info->byte_size;
memcpy(const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
data.data(), std::min(data.size(), reg_byte_size));
bool success = data.size() >= reg_byte_size;
if (success) {
SetRegisterIsValid(reg, true);
} else if (data.size() > 0) {
// Only set register is valid to false if we copied some bytes, else leave
// it as it was.
SetRegisterIsValid(reg, false);
}
return success;
}
bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
uint64_t new_reg_val) {
const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
if (reg_info == nullptr)
return false;
// Early in process startup, we can get a thread that has an invalid byte
// order because the process hasn't been completely set up yet (see the ctor
// where the byte order is setfrom the process). If that's the case, we
// can't set the value here.
if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
return false;
}
// Invalidate if needed
InvalidateIfNeeded(false);
DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
DataExtractor extractor;
extractor.SetData(buffer_sp, 0, buffer_sp->GetByteSize());
// If our register context and our register info disagree, which should never
// happen, don't overwrite past the end of the buffer.
if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
return false;
// Grab a pointer to where we are going to put this register
uint8_t *dst = const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
if (dst == nullptr)
return false;
if (extractor.CopyByteOrderedData(
0, // src offset
reg_info->byte_size, // src length
dst, // dst
reg_info->byte_size, // dst length
m_reg_data.GetByteOrder())) // dst byte order
{
SetRegisterIsValid(reg, true);
return true;
}
return false;
}
// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
bool GDBRemoteRegisterContext::GetPrimordialRegister(
const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
if (DataBufferSP buffer_sp =
gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
return PrivateSetRegisterValue(
lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
buffer_sp->GetByteSize()));
return false;
}
bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
InvalidateIfNeeded(false);
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
if (!GetRegisterIsValid(reg)) {
if (m_read_all_at_once && !m_gpacket_cached) {
if (DataBufferSP buffer_sp =
gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
buffer_sp->GetBytes(),
std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
SetAllRegisterValid(true);
return true;
} else if (buffer_sp->GetByteSize() > 0) {
for (auto x : llvm::enumerate(
m_reg_info_sp->registers<
DynamicRegisterInfo::reg_collection_const_range>())) {
const struct RegisterInfo &reginfo = x.value();
m_reg_valid[x.index()] =
(reginfo.byte_offset + reginfo.byte_size <=
buffer_sp->GetByteSize());
}
m_gpacket_cached = true;
if (GetRegisterIsValid(reg))
return true;
} else {
Log *log(GetLog(GDBRLog::Thread | GDBRLog::Packets));
LLDB_LOGF(
log,
"error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
"to read the "
"entire register context at once, expected at least %" PRId64
" bytes "
"but only got %" PRId64 " bytes.",
m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
return false;
}
}
}
if (reg_info->value_regs) {
// Process this composite register request by delegating to the
// constituent primordial registers.
// Index of the primordial register.
bool success = true;
for (uint32_t idx = 0; success; ++idx) {
const uint32_t prim_reg = reg_info->value_regs[idx];
if (prim_reg == LLDB_INVALID_REGNUM)
break;
// We have a valid primordial register as our constituent. Grab the
// corresponding register info.
const RegisterInfo *prim_reg_info =
GetRegisterInfo(eRegisterKindLLDB, prim_reg);
if (prim_reg_info == nullptr)
success = false;
else {
// Read the containing register if it hasn't already been read
if (!GetRegisterIsValid(prim_reg))
success = GetPrimordialRegister(prim_reg_info, gdb_comm);
}
}
if (success) {
// If we reach this point, all primordial register requests have
// succeeded. Validate this composite register.
SetRegisterIsValid(reg_info, true);
}
} else {
// Get each register individually
GetPrimordialRegister(reg_info, gdb_comm);
}
// Make sure we got a valid register value after reading it
if (!GetRegisterIsValid(reg))
return false;
}
return true;
}
bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
const RegisterValue &value) {
DataExtractor data;
if (value.GetData(data)) {
if (reg_info->value_regs &&
reg_info->value_regs[0] != LLDB_INVALID_REGNUM &&
reg_info->value_regs[1] != LLDB_INVALID_REGNUM) {
uint32_t combined_size = 0;
for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
const RegisterInfo *parent_reg = GetRegisterInfo(
eRegisterKindLLDB, reg_info->value_regs[i]);
if (!parent_reg)
return false;
combined_size += parent_reg->byte_size;
}
if (data.GetByteSize() < combined_size)
return false;
uint32_t offset = 0;
for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
const RegisterInfo *parent_reg = GetRegisterInfo(
eRegisterKindLLDB, reg_info->value_regs[i]);
assert(parent_reg);
DataExtractor parent_data{data, offset, parent_reg->byte_size};
if (!WriteRegisterBytes(parent_reg, parent_data, 0))
return false;
offset += parent_reg->byte_size;
}
assert(offset == combined_size);
return true;
} else
return WriteRegisterBytes(reg_info, data, 0);
}
return false;
}
// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
bool GDBRemoteRegisterContext::SetPrimordialRegister(
const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
StreamString packet;
StringExtractorGDBRemote response;
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
// Invalidate just this register
SetRegisterIsValid(reg, false);
return gdb_comm.WriteRegister(
m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
{m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
reg_info->byte_size});
}
bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
DataExtractor &data,
uint32_t data_offset) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
assert(m_reg_data.GetByteSize() >=
reg_info->byte_offset + reg_info->byte_size);
// If our register context and our register info disagree, which should never
// happen, don't overwrite past the end of the buffer.
if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
return false;
// Grab a pointer to where we are going to put this register
uint8_t *dst = const_cast<uint8_t *>(
m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
if (dst == nullptr)
return false;
const bool should_reconfigure_registers =
RegisterWriteCausesReconfigure(reg_info->name);
if (data.CopyByteOrderedData(data_offset, // src offset
reg_info->byte_size, // src length
dst, // dst
reg_info->byte_size, // dst length
m_reg_data.GetByteOrder())) // dst byte order
{
GDBRemoteClientBase::Lock lock(gdb_comm);
if (lock) {
if (m_write_all_at_once) {
// Invalidate all register values
InvalidateIfNeeded(true);
// Set all registers in one packet
if (gdb_comm.WriteAllRegisters(
m_thread.GetProtocolID(),
{m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
{
if (should_reconfigure_registers)
ReconfigureRegisterInfo();
InvalidateAllRegisters();
return true;
}
} else {
bool success = true;
if (reg_info->value_regs) {
// This register is part of another register. In this case we read
// the actual register data for any "value_regs", and once all that
// data is read, we will have enough data in our register context
// bytes for the value of this register
// Invalidate this composite register first.
for (uint32_t idx = 0; success; ++idx) {
const uint32_t reg = reg_info->value_regs[idx];
if (reg == LLDB_INVALID_REGNUM)
break;
// We have a valid primordial register as our constituent. Grab the
// corresponding register info.
const RegisterInfo *value_reg_info =
GetRegisterInfo(eRegisterKindLLDB, reg);
if (value_reg_info == nullptr)
success = false;
else
success = SetPrimordialRegister(value_reg_info, gdb_comm);
}
} else {
// This is an actual register, write it
success = SetPrimordialRegister(reg_info, gdb_comm);
}
// Check if writing this register will invalidate any other register
// values? If so, invalidate them
if (reg_info->invalidate_regs) {
for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
reg != LLDB_INVALID_REGNUM;
reg = reg_info->invalidate_regs[++idx])
SetRegisterIsValid(ConvertRegisterKindToRegisterNumber(
eRegisterKindLLDB, reg),
false);
}
if (success && should_reconfigure_registers &&
ReconfigureRegisterInfo())
InvalidateAllRegisters();
return success;
}
} else {
Log *log(GetLog(GDBRLog::Thread | GDBRLog::Packets));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
process->DumpPluginHistory(strm);
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"write register for \"%s\":\n%s",
reg_info->name, strm.GetData());
} else
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"write register for \"%s\"",
reg_info->name);
}
}
}
return false;
}
bool GDBRemoteRegisterContext::ReadAllRegisterValues(
RegisterCheckpoint &reg_checkpoint) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
uint32_t save_id = 0;
if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
reg_checkpoint.SetID(save_id);
reg_checkpoint.GetData().reset();
return true;
} else {
reg_checkpoint.SetID(0); // Invalid save ID is zero
return ReadAllRegisterValues(reg_checkpoint.GetData());
}
}
bool GDBRemoteRegisterContext::WriteAllRegisterValues(
const RegisterCheckpoint &reg_checkpoint) {
uint32_t save_id = reg_checkpoint.GetID();
if (save_id != 0) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
} else {
return WriteAllRegisterValues(reg_checkpoint.GetData());
}
}
bool GDBRemoteRegisterContext::ReadAllRegisterValues(
lldb::WritableDataBufferSP &data_sp) {
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
const bool use_g_packet =
!gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
GDBRemoteClientBase::Lock lock(gdb_comm);
if (lock) {
if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
InvalidateAllRegisters();
if (use_g_packet) {
if (DataBufferSP data_buffer =
gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
data_sp = std::make_shared<DataBufferHeap>(*data_buffer);
return true;
}
}
// We're going to read each register
// individually and store them as binary data in a buffer.
const RegisterInfo *reg_info;
for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
i++) {
if (reg_info
->value_regs) // skip registers that are slices of real registers
continue;
ReadRegisterBytes(reg_info);
// ReadRegisterBytes saves the contents of the register in to the
// m_reg_data buffer
}
data_sp = std::make_shared<DataBufferHeap>(
m_reg_data.GetDataStart(), m_reg_info_sp->GetRegisterDataByteSize());
return true;
} else {
Log *log(GetLog(GDBRLog::Thread | GDBRLog::Packets));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
process->DumpPluginHistory(strm);
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"read all registers:\n%s",
strm.GetData());
} else
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"read all registers");
}
}
data_sp.reset();
return false;
}
bool GDBRemoteRegisterContext::WriteAllRegisterValues(
const lldb::DataBufferSP &data_sp) {
if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
return false;
ExecutionContext exe_ctx(CalculateThread());
Process *process = exe_ctx.GetProcessPtr();
Thread *thread = exe_ctx.GetThreadPtr();
if (process == nullptr || thread == nullptr)
return false;
GDBRemoteCommunicationClient &gdb_comm(
((ProcessGDBRemote *)process)->GetGDBRemote());
const bool use_g_packet =
!gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
GDBRemoteClientBase::Lock lock(gdb_comm);
if (lock) {
// The data_sp contains the G response packet.
if (use_g_packet) {
if (gdb_comm.WriteAllRegisters(
m_thread.GetProtocolID(),
{data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
return true;
uint32_t num_restored = 0;
// We need to manually go through all of the registers and restore them
// manually
DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
m_reg_data.GetAddressByteSize());
const RegisterInfo *reg_info;
// The g packet contents may either include the slice registers
// (registers defined in terms of other registers, e.g. eax is a subset
// of rax) or not. The slice registers should NOT be in the g packet,
// but some implementations may incorrectly include them.
//
// If the slice registers are included in the packet, we must step over
// the slice registers when parsing the packet -- relying on the
// RegisterInfo byte_offset field would be incorrect. If the slice
// registers are not included, then using the byte_offset values into the
// data buffer is the best way to find individual register values.
uint64_t size_including_slice_registers = 0;
uint64_t size_not_including_slice_registers = 0;
uint64_t size_by_highest_offset = 0;
for (uint32_t reg_idx = 0;
(reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
size_including_slice_registers += reg_info->byte_size;
if (reg_info->value_regs == nullptr)
size_not_including_slice_registers += reg_info->byte_size;
if (reg_info->byte_offset >= size_by_highest_offset)
size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
}
bool use_byte_offset_into_buffer;
if (size_by_highest_offset == restore_data.GetByteSize()) {
// The size of the packet agrees with the highest offset: + size in the
// register file
use_byte_offset_into_buffer = true;
} else if (size_not_including_slice_registers ==
restore_data.GetByteSize()) {
// The size of the packet is the same as concatenating all of the
// registers sequentially, skipping the slice registers
use_byte_offset_into_buffer = true;
} else if (size_including_slice_registers == restore_data.GetByteSize()) {
// The slice registers are present in the packet (when they shouldn't
// be). Don't try to use the RegisterInfo byte_offset into the
// restore_data, it will point to the wrong place.
use_byte_offset_into_buffer = false;
} else {
// None of our expected sizes match the actual g packet data we're
// looking at. The most conservative approach here is to use the
// running total byte offset.
use_byte_offset_into_buffer = false;
}
// In case our register definitions don't include the correct offsets,
// keep track of the size of each reg & compute offset based on that.
uint32_t running_byte_offset = 0;
for (uint32_t reg_idx = 0;
(reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
++reg_idx, running_byte_offset += reg_info->byte_size) {
// Skip composite aka slice registers (e.g. eax is a slice of rax).
if (reg_info->value_regs)
continue;
const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
uint32_t register_offset;
if (use_byte_offset_into_buffer) {
register_offset = reg_info->byte_offset;
} else {
register_offset = running_byte_offset;
}
const uint32_t reg_byte_size = reg_info->byte_size;
const uint8_t *restore_src =
restore_data.PeekData(register_offset, reg_byte_size);
if (restore_src) {
SetRegisterIsValid(reg, false);
if (gdb_comm.WriteRegister(
m_thread.GetProtocolID(),
reg_info->kinds[eRegisterKindProcessPlugin],
{restore_src, reg_byte_size}))
++num_restored;
}
}
return num_restored > 0;
} else {
// For the use_g_packet == false case, we're going to write each register
// individually. The data buffer is binary data in this case, instead of
// ascii characters.
bool arm64_debugserver = false;
if (m_thread.GetProcess().get()) {
const ArchSpec &arch =
m_thread.GetProcess()->GetTarget().GetArchitecture();
if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 ||
arch.GetMachine() == llvm::Triple::aarch64_32) &&
arch.GetTriple().getVendor() == llvm::Triple::Apple &&
arch.GetTriple().getOS() == llvm::Triple::IOS) {
arm64_debugserver = true;
}
}
uint32_t num_restored = 0;
const RegisterInfo *reg_info;
for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
i++) {
if (reg_info->value_regs) // skip registers that are slices of real
// registers
continue;
// Skip the fpsr and fpcr floating point status/control register
// writing to work around a bug in an older version of debugserver that
// would lead to register context corruption when writing fpsr/fpcr.
if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
strcmp(reg_info->name, "fpcr") == 0)) {
continue;
}
SetRegisterIsValid(reg_info, false);
if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
reg_info->kinds[eRegisterKindProcessPlugin],
{data_sp->GetBytes() + reg_info->byte_offset,
reg_info->byte_size}))
++num_restored;
}
return num_restored > 0;
}
} else {
Log *log(GetLog(GDBRLog::Thread | GDBRLog::Packets));
if (log) {
if (log->GetVerbose()) {
StreamString strm;
process->DumpPluginHistory(strm);
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"write all registers:\n%s",
strm.GetData());
} else
LLDB_LOGF(log,
"error: failed to get packet sequence mutex, not sending "
"write all registers");
}
}
return false;
}
uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
lldb::RegisterKind kind, uint32_t num) {
return m_reg_info_sp->ConvertRegisterKindToRegisterNumber(kind, num);
}
bool GDBRemoteRegisterContext::RegisterWriteCausesReconfigure(
const llvm::StringRef name) {
ExecutionContext exe_ctx(CalculateThread());
const Architecture *architecture =
exe_ctx.GetProcessRef().GetTarget().GetArchitecturePlugin();
return architecture && architecture->RegisterWriteCausesReconfigure(name);
}
bool GDBRemoteRegisterContext::ReconfigureRegisterInfo() {
ExecutionContext exe_ctx(CalculateThread());
const Architecture *architecture =
exe_ctx.GetProcessRef().GetTarget().GetArchitecturePlugin();
if (architecture)
return architecture->ReconfigureRegisterInfo(*(m_reg_info_sp.get()),
m_reg_data, *this);
return false;
}