gpu.launch_func (#72871)
NVIDIA Hopper architecture introduced the Cooperative Group Array (CGA).
It is a new level of parallelism, allowing clustering of Cooperative
Thread Arrays (CTA) to synchronize and communicate through shared memory
while running concurrently.
This PR enables support for CGA within the `gpu.launch_func` in the GPU
dialect. It extends `gpu.launch_func` to accommodate this functionality.
The GPU dialect remains architecture-agnostic, so we've added CGA
functionality as optional parameters. We want to leverage mechanisms
that we have in the GPU dialects such as outlining and kernel launching,
making it a practical and convenient choice.
An example of this implementation can be seen below:
```
gpu.launch_func @kernel_module::@kernel
clusters in (%1, %0, %0) // <-- Optional
blocks in (%0, %0, %0)
threads in (%0, %0, %0)
```
The PR also introduces index and dimensions Ops specific to clusters,
binding them to NVVM Ops:
```
%cidX = gpu.cluster_id x
%cidY = gpu.cluster_id y
%cidZ = gpu.cluster_id z
%cdimX = gpu.cluster_dim x
%cdimY = gpu.cluster_dim y
%cdimZ = gpu.cluster_dim z
```
We will introduce cluster support in `gpu.launch` Op in an upcoming PR.
See [the
documentation](https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cluster-of-cooperative-thread-arrays)
provided by NVIDIA for details.
The LLVM Compiler Infrastructure
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting in touch
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.