Files
llvm/mlir/lib/Transforms/DialectConversion.cpp
River Riddle a4c3a6455c Move the emitError/Warning/Remark utility methods out of MLIRContext and into the mlir namespace.
Now that Locations are attributes, they have direct access to the MLIR context. This allows for simplifying error emission by removing unnecessary context lookups.

PiperOrigin-RevId: 255112791
2019-06-25 21:32:23 -07:00

1213 lines
47 KiB
C++

//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
#define DEBUG_TYPE "dialect-conversion"
//===----------------------------------------------------------------------===//
// ArgConverter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a simple interface for converting the types of block
/// arguments. This is done by inserting fake cast operations that map from the
/// illegal type to the original type to allow for undoing pending rewrites in
/// the case of failure.
struct ArgConverter {
ArgConverter(MLIRContext *ctx)
: castOpName(kCastName, ctx), loc(UnknownLoc::get(ctx)) {}
/// Erase any rewrites registered for arguments to blocks within the given
/// region. This function is called when the given region is to be destroyed.
void cancelPendingRewrites(Region &region);
/// Cleanup and undo any generated conversion values.
void discardRewrites();
/// Replace usages of the cast operations with the argument directly.
LogicalResult applyRewrites();
/// Converts the signature of the given entry block.
void convertSignature(Block *block, PatternRewriter &rewriter,
TypeConverter &converter,
TypeConverter::SignatureConversion &signatureConversion,
BlockAndValueMapping &mapping);
/// Converts the arguments of the given block.
LogicalResult convertArguments(Block *block, PatternRewriter &rewriter,
TypeConverter &converter,
BlockAndValueMapping &mapping);
/// Convert the given block argument given the provided set of new argument
/// values that are to replace it. This function returns the operation used
/// to perform the conversion.
Operation *convertArgument(BlockArgument *origArg,
ArrayRef<Value *> newValues,
PatternRewriter &rewriter,
TypeConverter &converter,
BlockAndValueMapping &mapping);
/// A utility function used to create a conversion cast operation with the
/// given input and result types.
Operation *createCast(ArrayRef<Value *> inputs, Type outputType);
/// This is an operation name for a fake operation that is inserted during the
/// conversion process. Operations of this type are guaranteed to never escape
/// the converter.
static constexpr StringLiteral kCastName = "__mlir_conversion.cast";
OperationName castOpName;
/// This is a collection of cast operations that were generated during the
/// conversion process when converting the types of block arguments.
llvm::MapVector<Block *, SmallVector<Operation *, 4>> argMapping;
/// An instance of the unknown location that is used when generating
/// producers.
Location loc;
};
constexpr StringLiteral ArgConverter::kCastName;
/// Erase any rewrites registered for arguments to blocks within the given
/// region. This function is called when the given region is to be destroyed.
void ArgConverter::cancelPendingRewrites(Region &region) {
for (auto &block : region) {
auto it = argMapping.find(&block);
if (it == argMapping.end())
continue;
for (auto *op : it->second) {
// If the operation exists within the parent block, like with 1->N cast
// operations, we don't need to drop them. They will be automatically
// cleaned up with the region is destroyed.
if (op->getBlock())
continue;
op->dropAllDefinedValueUses();
op->destroy();
}
argMapping.erase(it);
}
}
/// Cleanup and undo any generated conversion values.
void ArgConverter::discardRewrites() {
// On failure reinstate all of the original block arguments.
Block *block;
ArrayRef<Operation *> argOps;
for (auto &mapping : argMapping) {
std::tie(block, argOps) = mapping;
// Erase all of the new arguments.
for (int i = block->getNumArguments() - 1; i >= 0; --i) {
block->getArgument(i)->dropAllUses();
block->eraseArgument(i, /*updatePredTerms=*/false);
}
// Re-instate the old arguments.
for (unsigned i = 0, e = argOps.size(); i != e; ++i) {
auto *op = argOps[i];
auto *arg = block->addArgument(op->getResult(0)->getType());
op->getResult(0)->replaceAllUsesWith(arg);
// If this was a 1->N value mapping it exists within the parent block so
// erase it instead of destroying.
if (op->getBlock())
op->erase();
else
op->destroy();
}
}
argMapping.clear();
}
/// Replace usages of the cast operations with the argument directly.
LogicalResult ArgConverter::applyRewrites() {
Block *block;
ArrayRef<Operation *> argOps;
LogicalResult result = success();
for (auto &mapping : argMapping) {
std::tie(block, argOps) = mapping;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = argOps.size(); i != e; ++i) {
auto *op = argOps[i];
// Handle the case of a 1->N value mapping.
if (op->getNumOperands() > 1) {
// If all of the uses were removed, we can drop this op. Otherwise,
// keep the operation alive and let the user handle any remaining
// usages.
if (op->use_empty())
op->erase();
continue;
}
// Handle the case where this argument had a direct mapping.
if (op->getNumOperands() == 1) {
op->getResult(0)->replaceAllUsesWith(op->getOperand(0));
// Otherwise, this argument was expected to be dropped.
} else if (!op->getResult(0)->use_empty()) {
// Don't emit another error if we already have one.
if (!failed(result)) {
auto *parent = block->getParent();
auto diag = emitError(parent->getLoc())
<< "block argument #" << i << " with type "
<< op->getResult(0)->getType()
<< " has unexpected remaining uses";
auto *user = *op->getResult(0)->user_begin();
diag.attachNote(user->getLoc())
<< "unexpected user defined here : " << *user;
result = failure();
}
// Move this fake producer to the beginning of the parent block, we
// can't recover from this failure and we want to make sure the
// operations get cleaned up. Recovering from this would require
// detecting that an argument would be unused before applying all of
// the operation rewrites, which can get quite expensive.
block->push_front(op);
continue;
}
op->destroy();
}
}
return result;
}
/// Converts the signature of the given entry block.
void ArgConverter::convertSignature(
Block *block, PatternRewriter &rewriter, TypeConverter &converter,
TypeConverter::SignatureConversion &signatureConversion,
BlockAndValueMapping &mapping) {
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedArgTypes();
if (origArgCount == 0 && convertedTypes.empty())
return;
SmallVector<Value *, 4> newArgRange(block->addArguments(convertedTypes));
ArrayRef<Value *> newArgRef(newArgRange);
// Remap each of the original arguments as determined by the signature
// conversion.
auto &newArgMapping = argMapping[block];
rewriter.setInsertionPointToStart(block);
for (unsigned i = 0; i != origArgCount; ++i) {
ArrayRef<Value *> remappedValues;
if (auto inputMap = signatureConversion.getInputMapping(i))
remappedValues = newArgRef.slice(inputMap->inputNo, inputMap->size);
BlockArgument *arg = block->getArgument(i);
newArgMapping.push_back(
convertArgument(arg, remappedValues, rewriter, converter, mapping));
}
// Erase all of the original arguments.
for (unsigned i = 0; i != origArgCount; ++i)
block->eraseArgument(0, /*updatePredTerms=*/false);
}
/// Converts the arguments of the given block.
LogicalResult ArgConverter::convertArguments(Block *block,
PatternRewriter &rewriter,
TypeConverter &converter,
BlockAndValueMapping &mapping) {
unsigned origArgCount = block->getNumArguments();
if (origArgCount == 0)
return success();
// Convert the types of each of the block arguments.
SmallVector<SmallVector<Type, 1>, 4> newArgTypes(origArgCount);
for (unsigned i = 0; i != origArgCount; ++i) {
auto *arg = block->getArgument(i);
if (failed(converter.convertType(arg->getType(), newArgTypes[i])))
return emitError(block->getParent()->getLoc())
<< "could not convert block argument of type " << arg->getType();
}
// Remap all of the original argument values.
auto &newArgMapping = argMapping[block];
rewriter.setInsertionPointToStart(block);
for (unsigned i = 0; i != origArgCount; ++i) {
SmallVector<Value *, 1> newArgs(block->addArguments(newArgTypes[i]));
newArgMapping.push_back(convertArgument(block->getArgument(i), newArgs,
rewriter, converter, mapping));
}
// Erase all of the original arguments.
for (unsigned i = 0; i != origArgCount; ++i)
block->eraseArgument(0, /*updatePredTerms=*/false);
return success();
}
/// Convert the given block argument given the provided set of new argument
/// values that are to replace it. This function returns the operation used
/// to perform the conversion.
Operation *ArgConverter::convertArgument(BlockArgument *origArg,
ArrayRef<Value *> newValues,
PatternRewriter &rewriter,
TypeConverter &converter,
BlockAndValueMapping &mapping) {
// Handle the cases of 1->0 or 1->1 mappings.
if (newValues.size() < 2) {
// Create a temporary producer for the argument during the conversion
// process.
auto *cast = createCast(newValues, origArg->getType());
origArg->replaceAllUsesWith(cast->getResult(0));
// Insert a mapping between this argument and the one that is replacing
// it.
if (!newValues.empty())
mapping.map(cast->getResult(0), newValues[0]);
return cast;
}
// Otherwise, this is a 1->N mapping. Call into the provided type converter
// to pack the new values.
auto *cast = converter.materializeConversion(rewriter, origArg->getType(),
newValues, loc);
assert(cast->getNumResults() == 1 &&
cast->getNumOperands() == newValues.size());
origArg->replaceAllUsesWith(cast->getResult(0));
return cast;
}
/// A utility function used to create a conversion cast operation with the
/// given input and result types.
Operation *ArgConverter::createCast(ArrayRef<Value *> inputs, Type outputType) {
return Operation::create(loc, castOpName, inputs, outputType, llvm::None,
llvm::None, 0, false, outputType.getContext());
}
//===----------------------------------------------------------------------===//
// DialectConversionRewriter
//===----------------------------------------------------------------------===//
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numCreatedOperations, unsigned numReplacements,
unsigned numBlockActions)
: numCreatedOperations(numCreatedOperations),
numReplacements(numReplacements), numBlockActions(numBlockActions) {}
/// The current number of created operations.
unsigned numCreatedOperations;
/// The current number of replacements queued.
unsigned numReplacements;
/// The current number of block actions performed.
unsigned numBlockActions;
};
/// This class implements a pattern rewriter for ConversionPattern
/// patterns. It automatically performs remapping of replaced operation values.
struct DialectConversionRewriter final : public PatternRewriter {
/// This class represents one requested operation replacement via 'replaceOp'.
struct OpReplacement {
OpReplacement() = default;
OpReplacement(Operation *op, ArrayRef<Value *> newValues)
: op(op), newValues(newValues.begin(), newValues.end()) {}
Operation *op;
SmallVector<Value *, 2> newValues;
};
/// The kind of the block action performed during the rewrite. Actions can be
/// undone if the conversion fails.
enum class BlockActionKind { Split, Move };
/// Original position of the given block in its parent region. We cannot use
/// a region iterator because it could have been invalidated by other region
/// operations since the position was stored.
struct BlockPosition {
Region *region;
Region::iterator::difference_type position;
};
/// The storage class for an undoable block action (one of BlockActionKind),
/// contains the information necessary to undo this action.
struct BlockAction {
// A pointer to the block that was created by the action.
Block *block;
union {
// In use if kind == BlockActionKind::Move and contains a pointer to the
// region that originally contained the block as well as the position of
// the block in that region.
BlockPosition originalPosition;
// In use if kind == BlockActionKind::Split and contains a pointer to the
// block that was split into two parts.
Block *originalBlock;
};
BlockActionKind kind;
};
DialectConversionRewriter(Region &region)
: PatternRewriter(region), argConverter(region.getContext()) {}
~DialectConversionRewriter() = default;
/// Return the current state of the rewriter.
RewriterState getCurrentState() {
return RewriterState(createdOps.size(), replacements.size(),
blockActions.size());
}
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state) {
// Reset any replaced operations and undo any saved mappings.
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
for (auto *result : repl.op->getResults())
mapping.erase(result);
replacements.resize(state.numReplacements);
// Pop all of the newly created operations.
while (createdOps.size() != state.numCreatedOperations)
createdOps.pop_back_val()->erase();
// Undo any block operations.
undoBlockActions(state.numBlockActions);
}
/// Undo the block actions (motions, splits) one by one in reverse order until
/// "numActionsToKeep" actions remains.
void undoBlockActions(unsigned numActionsToKeep = 0) {
for (auto &action :
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
switch (action.kind) {
// Merge back the block that was split out.
case BlockActionKind::Split: {
action.originalBlock->getOperations().splice(
action.originalBlock->end(), action.block->getOperations());
action.block->erase();
break;
}
// Move the block back to its original position.
case BlockActionKind::Move: {
Region *originalRegion = action.originalPosition.region;
originalRegion->getBlocks().splice(
std::next(originalRegion->begin(),
action.originalPosition.position),
action.block->getParent()->getBlocks(), action.block);
break;
}
}
}
}
/// Cleanup and destroy any generated rewrite operations. This method is
/// invoked when the conversion process fails.
void discardRewrites() {
argConverter.discardRewrites();
// Remove any newly created ops.
for (auto *op : createdOps) {
op->dropAllDefinedValueUses();
op->erase();
}
undoBlockActions();
}
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
LogicalResult applyRewrites() {
// Apply all of the rewrites replacements requested during conversion.
for (auto &repl : replacements) {
for (unsigned i = 0, e = repl.newValues.size(); i != e; ++i)
repl.op->getResult(i)->replaceAllUsesWith(repl.newValues[i]);
// if this operation defines any regions, drop any pending argument
// rewrites.
if (repl.op->getNumRegions() && !argConverter.argMapping.empty()) {
for (auto &region : repl.op->getRegions())
argConverter.cancelPendingRewrites(region);
}
repl.op->erase();
}
return argConverter.applyRewrites();
}
/// PatternRewriter hook for replacing the results of an operation.
void replaceOp(Operation *op, ArrayRef<Value *> newValues,
ArrayRef<Value *> valuesToRemoveIfDead) override {
assert(newValues.size() == op->getNumResults());
// Create mappings for each of the new result values.
for (unsigned i = 0, e = newValues.size(); i < e; ++i) {
assert((newValues[i] || op->getResult(i)->use_empty()) &&
"result value has remaining uses that must be replaced");
if (newValues[i])
mapping.map(op->getResult(i), newValues[i]);
}
// Record the requested operation replacement.
replacements.emplace_back(op, newValues);
}
/// PatternRewriter hook for splitting a block into two parts.
Block *splitBlock(Block *block, Block::iterator before) override {
auto *continuation = PatternRewriter::splitBlock(block, before);
BlockAction action;
action.kind = BlockActionKind::Split;
action.block = continuation;
action.originalBlock = block;
blockActions.push_back(action);
return continuation;
}
/// PatternRewriter hook for moving blocks out of a region.
void inlineRegionBefore(Region &region, Region &parent,
Region::iterator before) override {
for (auto &pair : llvm::enumerate(region)) {
Block &block = pair.value();
unsigned position = pair.index();
BlockAction action;
action.kind = BlockActionKind::Move;
action.block = &block;
action.originalPosition = {&region, position};
blockActions.push_back(action);
}
PatternRewriter::inlineRegionBefore(region, parent, before);
}
/// PatternRewriter hook for creating a new operation.
Operation *createOperation(const OperationState &state) override {
auto *result = OpBuilder::createOperation(state);
createdOps.push_back(result);
return result;
}
/// PatternRewriter hook for updating the root operation in-place.
void notifyRootUpdated(Operation *op) override {
// The rewriter caches changes to the IR to allow for operating in-place and
// backtracking. The rewrite is currently not capable of backtracking
// in-place modifications.
llvm_unreachable("in-place operation updates are not supported");
}
/// Remap the given operands to those with potentially different types.
void remapValues(Operation::operand_range operands,
SmallVectorImpl<Value *> &remapped) {
remapped.reserve(llvm::size(operands));
for (Value *operand : operands)
remapped.push_back(mapping.lookupOrDefault(operand));
}
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
BlockAndValueMapping mapping;
/// Utility used to convert block arguments.
ArgConverter argConverter;
/// Ordered vector of all of the newly created operations during conversion.
SmallVector<Operation *, 4> createdOps;
/// Ordered vector of any requested operation replacements.
SmallVector<OpReplacement, 4> replacements;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<BlockAction, 4> blockActions;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ConversionPattern
//===----------------------------------------------------------------------===//
/// Attempt to match and rewrite the IR root at the specified operation.
PatternMatchResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
SmallVector<Value *, 4> operands;
auto &dialectRewriter = static_cast<DialectConversionRewriter &>(rewriter);
dialectRewriter.remapValues(op->getOperands(), operands);
// If this operation has no successors, invoke the rewrite directly.
if (op->getNumSuccessors() == 0)
return matchAndRewrite(op, operands, rewriter);
// Otherwise, we need to remap the successors.
SmallVector<Block *, 2> destinations;
destinations.reserve(op->getNumSuccessors());
SmallVector<ArrayRef<Value *>, 2> operandsPerDestination;
unsigned firstSuccessorOperand = op->getSuccessorOperandIndex(0);
for (unsigned i = 0, seen = 0, e = op->getNumSuccessors(); i < e; ++i) {
destinations.push_back(op->getSuccessor(i));
// Lookup the successors operands.
unsigned n = op->getNumSuccessorOperands(i);
operandsPerDestination.push_back(
llvm::makeArrayRef(operands.data() + firstSuccessorOperand + seen, n));
seen += n;
}
// Rewrite the operation.
return matchAndRewrite(
op,
llvm::makeArrayRef(operands.data(),
operands.data() + firstSuccessorOperand),
destinations, operandsPerDestination, rewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<RewritePattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
OperationLegalizer(ConversionTarget &targetInfo,
OwningRewritePatternList &patterns)
: target(targetInfo) {
buildLegalizationGraph(patterns);
computeLegalizationGraphBenefit();
}
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, DialectConversionRewriter &rewriter);
private:
/// Attempt to legalize the given operation by applying the provided pattern.
/// Returns success if the operation was legalized, failure otherwise.
LogicalResult legalizePattern(Operation *op, RewritePattern *pattern,
DialectConversionRewriter &rewriter);
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'legalizerPatterns' with the operations that are not
/// directly legal, but may be transitively legal for the current target given
/// the provided patterns.
void buildLegalizationGraph(OwningRewritePatternList &patterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit();
/// The current set of patterns that have been applied.
llvm::SmallPtrSet<RewritePattern *, 8> appliedPatterns;
/// The set of legality information for operations transitively supported by
/// the target.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
/// The legalization information provided by the target.
ConversionTarget &target;
};
} // namespace
LogicalResult
OperationLegalizer::legalize(Operation *op,
DialectConversionRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Legalizing operation : " << op->getName()
<< "\n");
// Check if this was marked legal by the target.
if (auto action = target.getOpAction(op->getName())) {
// Check if this operation is always legal.
if (*action == ConversionTarget::LegalizationAction::Legal)
return success();
// Otherwise, handle dynamic legalization.
LLVM_DEBUG(llvm::dbgs() << "- Trying dynamic legalization.\n");
if (target.isDynamicallyLegal(op))
return success();
// Fallthough to see if a pattern can convert this into a legal operation.
}
// Otherwise, we need to apply a legalization pattern to this operation.
auto it = legalizerPatterns.find(op->getName());
if (it == legalizerPatterns.end()) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no known legalization path.\n");
return failure();
}
// TODO(riverriddle) This currently has no cost model and doesn't prioritize
// specific patterns in any way.
for (auto *pattern : it->second)
if (succeeded(legalizePattern(op, pattern, rewriter)))
return success();
LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no matched legalization pattern.\n");
return failure();
}
LogicalResult
OperationLegalizer::legalizePattern(Operation *op, RewritePattern *pattern,
DialectConversionRewriter &rewriter) {
LLVM_DEBUG({
llvm::dbgs() << "-* Applying rewrite pattern '" << op->getName() << " -> (";
interleaveComma(pattern->getGeneratedOps(), llvm::dbgs());
llvm::dbgs() << ")'.\n";
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack.
// TODO(riverriddle) We could eventually converge, but that requires more
// complicated analysis.
if (!appliedPatterns.insert(pattern).second) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern was already applied.\n");
return failure();
}
RewriterState curState = rewriter.getCurrentState();
auto cleanupFailure = [&] {
// Reset the rewriter state and pop this pattern.
rewriter.resetState(curState);
appliedPatterns.erase(pattern);
return failure();
};
// Try to rewrite with the given pattern.
rewriter.setInsertionPoint(op);
if (!pattern->matchAndRewrite(op, rewriter)) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern failed to match.\n");
return cleanupFailure();
}
// Recursively legalize each of the new operations.
for (unsigned i = curState.numCreatedOperations,
e = rewriter.createdOps.size();
i != e; ++i) {
if (failed(legalize(rewriter.createdOps[i], rewriter))) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Generated operation was illegal.\n");
return cleanupFailure();
}
}
appliedPatterns.erase(pattern);
return success();
}
void OperationLegalizer::buildLegalizationGraph(
OwningRewritePatternList &patterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<RewritePattern *, 2>> invalidPatterns;
// A worklist of patterns to consider for legality.
llvm::SetVector<RewritePattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
for (auto &pattern : patterns) {
auto root = pattern->getRootKind();
// Skip operations that are always known to be legal.
if (target.getOpAction(root) == ConversionTarget::LegalizationAction::Legal)
continue;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[root].insert(pattern.get());
for (auto op : pattern->getGeneratedOps())
parentOps[op].insert(root);
// Add this pattern to the worklist.
patternWorklist.insert(pattern.get());
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
return !legalizerPatterns.count(op) && !target.getOpAction(op);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[pattern->getRootKind()].push_back(pattern);
invalidPatterns[pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit() {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minPatternDepth;
// Compute the minimum legalization depth for a given operation.
std::function<unsigned(OperationName)> computeDepth = [&](OperationName op) {
// Check for existing depth.
auto depthIt = minPatternDepth.find(op);
if (depthIt != minPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end())
return 0u;
auto &minDepth = minPatternDepth[op];
if (opPatternsIt->second.empty())
return minDepth;
// Initialize the depth to the maximum value.
minDepth = std::numeric_limits<unsigned>::max();
// Compute the depth for each pattern used to legalize this operation.
SmallVector<std::pair<RewritePattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(opPatternsIt->second.size());
for (RewritePattern *pattern : opPatternsIt->second) {
unsigned depth = 0;
for (auto generatedOp : pattern->getGeneratedOps())
depth = std::max(depth, computeDepth(generatedOp) + 1);
patternsByDepth.emplace_back(pattern, depth);
// Update the min depth for this operation.
minDepth = std::min(minDepth, depth);
}
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
llvm::array_pod_sort(
patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<RewritePattern *, unsigned> *lhs,
const std::pair<RewritePattern *, unsigned> *rhs) {
// First sort by the smaller pattern legalization depth.
if (lhs->second != rhs->second)
return llvm::array_pod_sort_comparator<unsigned>(&lhs->second,
&rhs->second);
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs->first->getBenefit();
auto rhsBenefit = rhs->first->getBenefit();
return llvm::array_pod_sort_comparator<PatternBenefit>(&rhsBenefit,
&lhsBenefit);
});
// Update the legalization pattern to use the new sorted list.
opPatternsIt->second.clear();
for (auto &patternIt : patternsByDepth)
opPatternsIt->second.push_back(patternIt.first);
return minDepth;
};
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minPatternDepth.count(opIt.first))
computeDepth(opIt.first);
}
//===----------------------------------------------------------------------===//
// FunctionConverter
//===----------------------------------------------------------------------===//
namespace {
// This class converts a single function using the given pattern matcher. If a
// TypeConverter object is provided, then the types of block arguments will be
// converted using the appropriate 'convertType' calls.
struct FunctionConverter {
explicit FunctionConverter(MLIRContext *ctx, ConversionTarget &target,
OwningRewritePatternList &patterns,
TypeConverter *conversion = nullptr)
: typeConverter(conversion), opLegalizer(target, patterns) {}
/// Converts the given function to the conversion target. Returns failure on
/// error, success otherwise. If 'signatureConversion' is provided, the
/// arguments of the entry block are updated accordingly.
LogicalResult
convertFunction(Function *f,
TypeConverter::SignatureConversion *signatureConversion);
/// Converts the given region starting from the entry block and following the
/// block successors. Returns failure on error, success otherwise. Prints
/// error messages at `loc`.
LogicalResult convertRegion(DialectConversionRewriter &rewriter,
Region &region, bool convertEntryTypes = true);
/// Converts a block by traversing its operations sequentially, attempting to
/// match a pattern. If there is no match, recurses the operations regions if
/// it has any.
//
/// After converting operations, traverses the successor blocks unless they
/// have been visited already as indicated in `visitedBlocks`.
LogicalResult convertBlock(DialectConversionRewriter &rewriter, Block *block,
DenseSet<Block *> &visitedBlocks);
/// Pointer to a specific dialect conversion info.
TypeConverter *typeConverter;
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
};
} // end anonymous namespace
LogicalResult
FunctionConverter::convertBlock(DialectConversionRewriter &rewriter,
Block *block,
DenseSet<Block *> &visitedBlocks) {
// First, add the current block to the list of visited blocks.
visitedBlocks.insert(block);
if (block->empty())
return success();
// Preserve the successors before rewriting the operations.
SmallVector<Block *, 4> successors(block->getSuccessors());
// Iterate over ops and convert them. Since the conversion may split the
// block, we eagerly take the pointer to the next operation in it. Splitting
// moves the operations from one block to another, so this will keep
// considering the original list of operations independently of the block
// within which they are currently located. This relies on iplist node API
// to get the next node in the list witout knowing which list it is, iterators
// are unsuitable because block splitting invalidates all iterators following
// the current one. Any operation inserted by the conversion, independently of
// its parent block, will be recursively legalized independently of this
// function.
Operation *current = &block->front();
Operation *next = nullptr;
do {
next = current->getNextNode();
// Traverse any held regions.
for (auto &region : current->getRegions())
if (!region.empty() && failed(convertRegion(rewriter, region)))
return failure();
// Legalize the current operation.
(void)opLegalizer.legalize(current, rewriter);
} while ((current = next));
// Recurse to children that haven't been visited.
for (Block *succ : successors) {
if (visitedBlocks.count(succ))
continue;
if (failed(convertBlock(rewriter, succ, visitedBlocks)))
return failure();
}
return success();
}
LogicalResult
FunctionConverter::convertRegion(DialectConversionRewriter &rewriter,
Region &region, bool convertEntryTypes) {
assert(!region.empty() && "expected non-empty region");
// Create the arguments of each of the blocks in the region. If a type
// converter was not provided, then we don't need to change any of the block
// types.
if (typeConverter) {
for (Block &block :
llvm::drop_begin(region.getBlocks(), convertEntryTypes ? 0 : 1)) {
if (failed(rewriter.argConverter.convertArguments(
&block, rewriter, *typeConverter, rewriter.mapping)))
return failure();
}
}
// Store the number of blocks before conversion (new blocks may be added due
// to splits or moves, but the operations in them will be processed
// elsewhere).
unsigned numBlocks = std::distance(region.begin(), region.end());
// Start a DFS-order traversal of the CFG to make sure defs are converted
// before uses in dominated blocks.
llvm::DenseSet<Block *> visitedBlocks;
if (failed(convertBlock(rewriter, &region.front(), visitedBlocks)))
return failure();
// If some blocks are not reachable through successor chains, they should have
// been removed by the DCE before this.
if (visitedBlocks.size() != numBlocks)
return emitError(region.getLoc(), "unreachable blocks were not converted");
return success();
}
LogicalResult FunctionConverter::convertFunction(
Function *f, TypeConverter::SignatureConversion *signatureConversion) {
// If this is an external function, there is nothing else to do.
if (f->isExternal())
return success();
DialectConversionRewriter rewriter(f->getBody());
// Update the signature of the entry block.
if (signatureConversion) {
rewriter.argConverter.convertSignature(&f->getBody().front(), rewriter,
*typeConverter, *signatureConversion,
rewriter.mapping);
}
// Rewrite the function body.
if (failed(
convertRegion(rewriter, f->getBody(), /*convertEntryTypes=*/false))) {
// Reset any of the generated rewrites.
rewriter.discardRewrites();
return failure();
}
// Otherwise the body conversion succeeded, so try to apply all rewrites.
return rewriter.applyRewrites();
}
//===----------------------------------------------------------------------===//
// TypeConverter
//===----------------------------------------------------------------------===//
/// Append new result types to the signature conversion.
void TypeConverter::SignatureConversion::addResults(ArrayRef<Type> results) {
resultTypes.append(results.begin(), results.end());
}
/// Remap an input of the original signature with a new set of types. The
/// new types are appended to the new signature conversion.
void TypeConverter::SignatureConversion::addInputs(
unsigned origInputNo, ArrayRef<Type> types,
ArrayRef<NamedAttributeList> attrs) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types, attrs);
}
/// Append new input types to the signature conversion, this should only be
/// used if the new types are not intended to remap an existing input.
void TypeConverter::SignatureConversion::addInputs(
ArrayRef<Type> types, ArrayRef<NamedAttributeList> attrs) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
assert(attrs.empty() || types.size() == attrs.size());
argTypes.append(types.begin(), types.end());
if (attrs.empty())
argAttrs.resize(argTypes.size());
else
argAttrs.append(attrs.begin(), attrs.end());
}
/// Remap an input of the original signature with a range of types in the
/// new signature.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] = InputMapping{newInputNo, newInputCount};
}
/// This hooks allows for converting a type.
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) {
if (auto newT = convertType(t)) {
results.push_back(newT);
return success();
}
return failure();
}
/// Convert the given FunctionType signature.
auto TypeConverter::convertSignature(FunctionType type,
ArrayRef<NamedAttributeList> argAttrs)
-> llvm::Optional<SignatureConversion> {
SignatureConversion result(type.getNumInputs());
if (failed(convertSignature(type, argAttrs, result)))
return llvm::None;
return result;
}
/// This hook allows for changing a FunctionType signature.
LogicalResult
TypeConverter::convertSignature(FunctionType type,
ArrayRef<NamedAttributeList> argAttrs,
SignatureConversion &result) {
// Convert the original function arguments.
for (unsigned i = 0, e = type.getNumInputs(); i != e; ++i)
if (failed(convertSignatureArg(i, type.getInput(i), argAttrs[i], result)))
return failure();
// Convert the original function results.
SmallVector<Type, 1> convertedTypes;
for (auto t : type.getResults()) {
convertedTypes.clear();
if (failed(convertType(t, convertedTypes)))
return failure();
result.addResults(convertedTypes);
}
return success();
}
/// This hook allows for converting a specific argument of a signature.
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
NamedAttributeList attrs,
SignatureConversion &result) {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
auto convertedAttrs =
convertedTypes.size() == 1 ? llvm::makeArrayRef(attrs) : llvm::None;
result.addInputs(inputNo, convertedTypes, convertedAttrs);
return success();
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
/// Register a legality action for the given operation.
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op] = action;
}
/// Register a legality action for the given dialects.
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
/// Get the legality action for the given operation.
auto ConversionTarget::getOpAction(OperationName op) const
-> llvm::Optional<LegalizationAction> {
// Check for an action for this specific operation.
auto it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Otherwise, default to checking for an action on the parent dialect.
auto dialectIt = legalDialects.find(op.getDialect());
if (dialectIt != legalDialects.end())
return dialectIt->second;
return llvm::None;
}
//===----------------------------------------------------------------------===//
// applyConversionPatterns
//===----------------------------------------------------------------------===//
namespace {
/// This class represents a function to be converted. It allows for converting
/// the body of functions and the signature in two phases.
struct ConvertedFunction {
ConvertedFunction(Function *fn, FunctionType newType,
ArrayRef<NamedAttributeList> newFunctionArgAttrs)
: fn(fn), newType(newType),
newFunctionArgAttrs(newFunctionArgAttrs.begin(),
newFunctionArgAttrs.end()) {}
/// The function to convert.
Function *fn;
/// The new type and argument attributes for the function.
FunctionType newType;
SmallVector<NamedAttributeList, 4> newFunctionArgAttrs;
};
} // end anonymous namespace
/// Convert the given module with the provided conversion patterns and type
/// conversion object. If conversion fails for specific functions, those
/// functions remains unmodified.
LogicalResult
mlir::applyConversionPatterns(Module &module, ConversionTarget &target,
TypeConverter &converter,
OwningRewritePatternList &&patterns) {
std::vector<Function *> allFunctions;
allFunctions.reserve(module.getFunctions().size());
for (auto &func : module)
allFunctions.push_back(&func);
return applyConversionPatterns(allFunctions, target, converter,
std::move(patterns));
}
/// Convert the given functions with the provided conversion patterns.
LogicalResult mlir::applyConversionPatterns(
ArrayRef<Function *> fns, ConversionTarget &target,
TypeConverter &converter, OwningRewritePatternList &&patterns) {
if (fns.empty())
return success();
// Build the function converter.
FunctionConverter funcConverter(fns.front()->getContext(), target, patterns,
&converter);
// Try to convert each of the functions within the module.
auto *ctx = fns.front()->getContext();
for (auto *func : fns) {
// Convert the function type using the type converter.
auto conversion =
converter.convertSignature(func->getType(), func->getAllArgAttrs());
if (!conversion)
return failure();
// Update the function signature.
func->setType(conversion->getConvertedType(ctx));
func->setAllArgAttrs(conversion->getConvertedArgAttrs());
// Convert the body of this function.
if (failed(funcConverter.convertFunction(func, &*conversion)))
return failure();
}
return success();
}
/// Convert the given function with the provided conversion patterns. This will
/// convert as many of the operations within 'fn' as possible given the set of
/// patterns.
LogicalResult
mlir::applyConversionPatterns(Function &fn, ConversionTarget &target,
OwningRewritePatternList &&patterns) {
// Convert the body of this function.
FunctionConverter converter(fn.getContext(), target, patterns);
return converter.convertFunction(&fn, /*signatureConversion=*/nullptr);
}