An empty output section specified in the `SECTIONS` command (e.g.
`empty : { *(empty) }`) may be discarded. Due to phase ordering, we
might define `__start_empty`/`__stop_empty` symbols with incorrect
section indexes (usually benign, but could go out of bounds and cause
`readelf -s` to print `BAD`).
```
finalizeSections
addStartStopSymbols // __start_empty is defined
// __start_empty is added to .symtab
sortSections
adjustOutputSections // `empty` is discarded
writeSections
// __start_empty is Defined with an invalid section index
```
Loaders use `st_value` members of the start/stop symbols and expect no
"undefined symbol" linker error, but do not particularly care whether
the symbols are defined or undefined. Let's retain the associated empty
output section so that start/stop symbols will have correct section
indexes.
The approach allows us to remove `LinkerScript::isDiscarded`
(https://reviews.llvm.org/D114179). Also delete the
`findSection(".text")` special case from https://reviews.llvm.org/D46200,
which is unnecessary even before this patch (`elfHeader` would be fine
even with very large executables).
Note: we should be careful not to unnecessarily retain .ARM.exidx, which
would create an empty PT_ARM_EXIDX. ~40 tests would need to be updated.
---
An alternative is to discard the empty output section and keep the
start/stop symbols undefined. This approach needs more code and requires
`LinkerScript::isDiscarded` before we discard empty sections in
``adjustOutputSections`.
Pull Request: https://github.com/llvm/llvm-project/pull/96343
The LLVM Compiler Infrastructure
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting in touch
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.