Revert "[X86] For minsize memset/memcpy, use byte or double-word accesses (#87003)"

This caused assertion failures:

  llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:7736:
  SDValue getMemsetValue(SDValue, EVT, SelectionDAG &, const SDLoc &):
  Assertion `C->getAPIntValue().getBitWidth() == 8' failed.

See comment on the PR for a reproducer.

> repstosb and repstosd are the same size, but stosd is only done for 0
> because the process of multiplying the constant so that it is copied
> across the bytes of the 32-bit number adds extra instructions that cause
> the size to increase. For 0, repstosb and repstosd are the same size,
> but stosd is only done for 0 because the process of multiplying the
> constant so that it is copied across the bytes of the 32-bit number adds
> extra instructions that cause the size to increase. For 0, we do not
> need to do that at all.
>
> For memcpy, the same goes, and as a result the minsize check was moved
> ahead because a jmp to memcpy encoded takes more bytes than repmovsb.

This reverts commit 6de5305b3d.
This commit is contained in:
Hans Wennborg
2024-10-07 15:18:29 +02:00
parent 73c9ad2633
commit b2784ec328
5 changed files with 169 additions and 220 deletions

View File

@@ -28,23 +28,6 @@ static cl::opt<bool>
UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
cl::desc("Use fast short rep mov in memcpy lowering"));
/// Returns the best type to use with repmovs/repstos depending on alignment.
static MVT getOptimalRepType(const X86Subtarget &Subtarget, Align Alignment) {
uint64_t Align = Alignment.value();
assert((Align != 0) && "Align is normalized");
assert(isPowerOf2_64(Align) && "Align is a power of 2");
switch (Align) {
case 1:
return MVT::i8;
case 2:
return MVT::i16;
case 4:
return MVT::i32;
default:
return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
}
}
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
// We cannot use TRI->hasBasePointer() until *after* we select all basic
@@ -61,139 +44,6 @@ bool X86SelectionDAGInfo::isBaseRegConflictPossible(
return llvm::is_contained(ClobberSet, TRI->getBaseRegister());
}
/// Emit a single REP STOSB instruction for a particular constant size.
static SDValue emitRepstos(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Val, SDValue Size, MVT AVT) {
const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
unsigned AX = X86::AL;
switch (AVT.getSizeInBits()) {
case 8:
AX = X86::AL;
break;
case 16:
AX = X86::AX;
break;
case 32:
AX = X86::EAX;
break;
default:
AX = X86::RAX;
break;
}
const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
SDValue InGlue;
Chain = DAG.getCopyToReg(Chain, dl, AX, Val, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InGlue);
InGlue = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
return DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
}
/// Emit a single REP STOSB instruction for a particular constant size.
static SDValue emitRepstosB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Val, uint64_t Size) {
return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
/// Returns a REP STOS instruction, possibly with a few load/stores to implement
/// a constant size memory set. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
/// generate a store sequence or call the runtime memset function.
static SDValue emitConstantSizeRepstos(SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &dl, SDValue Chain,
SDValue Dst, SDValue Val, uint64_t Size,
EVT SizeVT, Align Alignment,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo) {
/// In case we optimize for size, we use repstosb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize()) {
if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
// Special case 0 because otherwise we get large literals,
// which causes larger encoding.
if ((Size & 31) == 0 && (ValC->getZExtValue() & 255) == 0) {
MVT BlockType = MVT::i32;
const uint64_t BlockBits = BlockType.getSizeInBits();
const uint64_t BlockBytes = BlockBits / 8;
const uint64_t BlockCount = Size / BlockBytes;
Val = DAG.getConstant(0, dl, BlockType);
// repstosd is same size as repstosb
return emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
}
}
return emitRepstosB(Subtarget, DAG, dl, Chain, Dst, Val, Size);
}
if (Size > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if (Alignment < Align(4))
return SDValue();
MVT BlockType = MVT::i8;
uint64_t BlockCount = Size;
uint64_t BytesLeft = 0;
if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
BlockType = getOptimalRepType(Subtarget, Alignment);
uint64_t Value = ValC->getZExtValue() & 255;
const uint64_t BlockBits = BlockType.getSizeInBits();
if (BlockBits >= 16)
Value = (Value << 8) | Value;
if (BlockBits >= 32)
Value = (Value << 16) | Value;
if (BlockBits >= 64)
Value = (Value << 32) | Value;
const uint64_t BlockBytes = BlockBits / 8;
BlockCount = Size / BlockBytes;
BytesLeft = Size % BlockBytes;
Val = DAG.getConstant(Value, dl, BlockType);
}
SDValue RepStos =
emitRepstos(Subtarget, DAG, dl, Chain, Dst, Val,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
/// RepStos can process the whole length.
if (BytesLeft == 0)
return RepStos;
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepStos);
unsigned Offset = Size - BytesLeft;
EVT AddrVT = Dst.getValueType();
Results.push_back(
DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, dl, AddrVT)),
Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
isVolatile, AlwaysInline,
/* CI */ nullptr, DstPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
@@ -209,14 +59,97 @@ SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
return SDValue();
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
return emitConstantSizeRepstos(
DAG, Subtarget, dl, Chain, Dst, Val, ConstantSize->getZExtValue(),
Size.getValueType(), Alignment, isVolatile, AlwaysInline, DstPtrInfo);
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if (Alignment < Align(4) || !ConstantSize ||
ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InGlue;
EVT AVT;
SDValue Count;
unsigned BytesLeft = 0;
if (auto *ValC = dyn_cast<ConstantSDNode>(Val)) {
unsigned ValReg;
uint64_t Val = ValC->getZExtValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
if (Alignment >= Align(4)) {
// DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget.is64Bit() && Alignment >= Align(8)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
} else if (Alignment == Align(2)) {
// WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
} else {
// Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = DAG.getIntPtrConstant(SizeVal, dl);
}
if (AVT.bitsGT(MVT::i8)) {
unsigned UBytes = AVT.getSizeInBits() / 8;
Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
BytesLeft = SizeVal % UBytes;
}
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
InGlue);
InGlue = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = DAG.getIntPtrConstant(SizeVal, dl);
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InGlue);
InGlue = Chain.getValue(1);
}
bool Use64BitRegs = Subtarget.isTarget64BitLP64();
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
Count, InGlue);
InGlue = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
Dst, InGlue);
InGlue = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InGlue};
SDValue RepStos = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
/// RepStos can process the whole length.
if (BytesLeft == 0)
return RepStos;
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepStos);
unsigned Offset = SizeVal - BytesLeft;
EVT AddrVT = Dst.getValueType();
EVT SizeVT = Size.getValueType();
Results.push_back(
DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, dl, AddrVT)),
Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
isVolatile, AlwaysInline,
/* CI */ nullptr, DstPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
/// Emit a single REP MOVS{B,W,D,Q} instruction.
@@ -249,6 +182,24 @@ static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
/// Returns the best type to use with repmovs depending on alignment.
static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
Align Alignment) {
uint64_t Align = Alignment.value();
assert((Align != 0) && "Align is normalized");
assert(isPowerOf2_64(Align) && "Align is a power of 2");
switch (Align) {
case 1:
return MVT::i8;
case 2:
return MVT::i16;
case 4:
return MVT::i32;
default:
return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
}
}
/// Returns a REP MOVS instruction, possibly with a few load/stores to implement
/// a constant size memory copy. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
@@ -258,10 +209,6 @@ static SDValue emitConstantSizeRepmov(
SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
/// In case we optimize for size, we use repmovsb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
/// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
/// efficient.
@@ -275,10 +222,10 @@ static SDValue emitConstantSizeRepmov(
assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
/// We assume runtime memcpy will do a better job for unaligned copies when
/// ERMS is not present.
if (!AlwaysInline && (Alignment < Align(4)))
if (!AlwaysInline && (Alignment.value() & 3) != 0)
return SDValue();
const MVT BlockType = getOptimalRepType(Subtarget, Alignment);
const MVT BlockType = getOptimalRepmovsType(Subtarget, Alignment);
const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
const uint64_t BlockCount = Size / BlockBytes;
const uint64_t BytesLeft = Size % BlockBytes;
@@ -292,6 +239,11 @@ static SDValue emitConstantSizeRepmov(
assert(BytesLeft && "We have leftover at this point");
/// In case we optimize for size we use repmovsb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
@@ -330,7 +282,7 @@ SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
if (UseFSRMForMemcpy && Subtarget.hasFSRM())
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
/// Handle constant sizes
/// Handle constant sizes,
if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(),

View File

@@ -78,9 +78,9 @@ define void @test2(ptr nocapture %x) nounwind minsize {
; NOFAST32-NEXT: pushl %esi
; NOFAST32-NEXT: subl $4100, %esp # imm = 0x1004
; NOFAST32-NEXT: movl {{[0-9]+}}(%esp), %esi
; NOFAST32-NEXT: movl $4096, %ecx # imm = 0x1000
; NOFAST32-NEXT: movl $1024, %ecx # imm = 0x400
; NOFAST32-NEXT: movl %esp, %edi
; NOFAST32-NEXT: rep;movsb (%esi), %es:(%edi)
; NOFAST32-NEXT: rep;movsl (%esi), %es:(%edi)
; NOFAST32-NEXT: calll foo@PLT
; NOFAST32-NEXT: addl $4100, %esp # imm = 0x1004
; NOFAST32-NEXT: popl %esi
@@ -106,9 +106,9 @@ define void @test2(ptr nocapture %x) nounwind minsize {
; NOFAST: # %bb.0:
; NOFAST-NEXT: subq $4104, %rsp # imm = 0x1008
; NOFAST-NEXT: movq %rdi, %rsi
; NOFAST-NEXT: movl $4096, %ecx # imm = 0x1000
; NOFAST-NEXT: movl $512, %ecx # imm = 0x200
; NOFAST-NEXT: movq %rsp, %rdi
; NOFAST-NEXT: rep;movsb (%rsi), %es:(%rdi)
; NOFAST-NEXT: rep;movsq (%rsi), %es:(%rdi)
; NOFAST-NEXT: callq foo@PLT
; NOFAST-NEXT: addq $4104, %rsp # imm = 0x1008
; NOFAST-NEXT: retq

View File

@@ -202,16 +202,14 @@ define void @test3_minsize(ptr nocapture %A, ptr nocapture %B) nounwind minsize
; DARWIN-LABEL: test3_minsize:
; DARWIN: ## %bb.0:
; DARWIN-NEXT: pushq $64
; DARWIN-NEXT: popq %rcx
; DARWIN-NEXT: rep;movsb (%rsi), %es:(%rdi)
; DARWIN-NEXT: retq
; DARWIN-NEXT: popq %rdx
; DARWIN-NEXT: jmp _memcpy ## TAILCALL
;
; LINUX-LABEL: test3_minsize:
; LINUX: # %bb.0:
; LINUX-NEXT: pushq $64
; LINUX-NEXT: popq %rcx
; LINUX-NEXT: rep;movsb (%rsi), %es:(%rdi)
; LINUX-NEXT: retq
; LINUX-NEXT: popq %rdx
; LINUX-NEXT: jmp memcpy@PLT # TAILCALL
;
; LINUX-SKL-LABEL: test3_minsize:
; LINUX-SKL: # %bb.0:
@@ -251,16 +249,14 @@ define void @test3_minsize_optsize(ptr nocapture %A, ptr nocapture %B) nounwind
; DARWIN-LABEL: test3_minsize_optsize:
; DARWIN: ## %bb.0:
; DARWIN-NEXT: pushq $64
; DARWIN-NEXT: popq %rcx
; DARWIN-NEXT: rep;movsb (%rsi), %es:(%rdi)
; DARWIN-NEXT: retq
; DARWIN-NEXT: popq %rdx
; DARWIN-NEXT: jmp _memcpy ## TAILCALL
;
; LINUX-LABEL: test3_minsize_optsize:
; LINUX: # %bb.0:
; LINUX-NEXT: pushq $64
; LINUX-NEXT: popq %rcx
; LINUX-NEXT: rep;movsb (%rsi), %es:(%rdi)
; LINUX-NEXT: retq
; LINUX-NEXT: popq %rdx
; LINUX-NEXT: jmp memcpy@PLT # TAILCALL
;
; LINUX-SKL-LABEL: test3_minsize_optsize:
; LINUX-SKL: # %bb.0:

View File

@@ -27,9 +27,11 @@ entry:
define void @medium_memset_to_rep_stos(ptr %ptr) minsize nounwind {
; CHECK-LABEL: medium_memset_to_rep_stos:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl $128, %ecx
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosl %eax, %es:(%rdi)
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: movl $512, %edx # imm = 0x200
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: callq memset@PLT
; CHECK-NEXT: popq %rax
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 512, i1 false)
@@ -39,9 +41,11 @@ entry:
define void @large_memset_to_rep_stos(ptr %ptr) minsize nounwind {
; CHECK-LABEL: large_memset_to_rep_stos:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl $1024, %ecx # imm = 0x400
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosl %eax, %es:(%rdi)
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: movl $4096, %edx # imm = 0x1000
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: callq memset@PLT
; CHECK-NEXT: popq %rax
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 4096, i1 false)
@@ -51,9 +55,11 @@ entry:
define void @huge_memset_to_rep_stos(ptr %ptr) minsize nounwind {
; CHECK-LABEL: huge_memset_to_rep_stos:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl $2048, %ecx # imm = 0x800
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosl %eax, %es:(%rdi)
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: movl $8192, %edx # imm = 0x2000
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: callq memset@PLT
; CHECK-NEXT: popq %rax
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 8192, i1 false)
@@ -63,9 +69,11 @@ entry:
define void @odd_length_memset_to_rep_stos(ptr %ptr) minsize nounwind {
; CHECK-LABEL: odd_length_memset_to_rep_stos:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: movl $255, %ecx
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosb %al, %es:(%rdi)
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: movl $255, %edx
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: callq memset@PLT
; CHECK-NEXT: popq %rax
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 255, i1 false)
@@ -75,10 +83,11 @@ entry:
define void @align_1_memset_to_rep_stos(ptr %ptr) minsize nounwind {
; CHECK-LABEL: align_1_memset_to_rep_stos:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq $64
; CHECK-NEXT: popq %rcx
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosl %eax, %es:(%rdi)
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: movl $256, %edx # imm = 0x100
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: callq memset@PLT
; CHECK-NEXT: popq %rax
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i32(ptr align 1 %ptr, i8 0, i32 256, i1 false)
@@ -88,10 +97,11 @@ entry:
define void @align_2_memset_to_rep_stos(ptr %ptr) minsize nounwind {
; CHECK-LABEL: align_2_memset_to_rep_stos:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq $64
; CHECK-NEXT: popq %rcx
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosl %eax, %es:(%rdi)
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: movl $256, %edx # imm = 0x100
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: callq memset@PLT
; CHECK-NEXT: popq %rax
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i32(ptr align 2 %ptr, i8 0, i32 256, i1 false)
@@ -101,10 +111,11 @@ entry:
define void @align_4_memset_to_rep_stos(ptr %ptr) minsize nounwind {
; CHECK-LABEL: align_4_memset_to_rep_stos:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq $64
; CHECK-NEXT: popq %rcx
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosl %eax, %es:(%rdi)
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: movl $256, %edx # imm = 0x100
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: callq memset@PLT
; CHECK-NEXT: popq %rax
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i32(ptr align 4 %ptr, i8 0, i32 256, i1 false)
@@ -114,10 +125,11 @@ entry:
define void @align_8_memset_to_rep_stos(ptr %ptr) minsize nounwind {
; CHECK-LABEL: align_8_memset_to_rep_stos:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq $64
; CHECK-NEXT: popq %rcx
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosl %eax, %es:(%rdi)
; CHECK-NEXT: pushq %rax
; CHECK-NEXT: movl $256, %edx # imm = 0x100
; CHECK-NEXT: xorl %esi, %esi
; CHECK-NEXT: callq memset@PLT
; CHECK-NEXT: popq %rax
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i32(ptr align 8 %ptr, i8 0, i32 256, i1 false)
@@ -127,10 +139,10 @@ entry:
define void @small_memset_to_rep_stos_64(ptr %ptr) minsize nounwind {
; CHECK-LABEL: small_memset_to_rep_stos_64:
; CHECK: # %bb.0: # %entry
; CHECK-NEXT: pushq $32
; CHECK-NEXT: pushq $16
; CHECK-NEXT: popq %rcx
; CHECK-NEXT: xorl %eax, %eax
; CHECK-NEXT: rep;stosl %eax, %es:(%rdi)
; CHECK-NEXT: rep;stosq %rax, %es:(%rdi)
; CHECK-NEXT: retq
entry:
call void @llvm.memset.p0.i64(ptr align 8 %ptr, i8 0, i64 128, i1 false)

View File

@@ -163,14 +163,3 @@ define void @inlined_set_doesnt_call_external_function(ptr %a, i8 %value) nounwi
tail call void @llvm.memset.inline.p0.i64(ptr %a, i8 %value, i64 1024, i1 0)
ret void
}
define void @memset_inlined_insize(ptr %a) nounwind minsize {
; CHECK-LABEL: memset_inlined_insize:
; CHECK: # %bb.0:
; CHECK-NEXT: movl $1024, %ecx # imm = 0x400
; CHECK-NEXT: movb $42, %al
; CHECK-NEXT: rep;stosb %al, %es:(%rdi)
; CHECK-NEXT: retq
tail call void @llvm.memset.inline.p0.i64(ptr %a, i8 42, i64 1024, i1 0)
ret void
}